IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2773-2781.html
   My bibliography  Save this article

Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant

Author

Listed:
  • Li, Qubo
  • Piechna, Janusz
  • Müller, Norbert

Abstract

Through means of 3-D CFD (Computational Fluid Dynamics) method, a novel axial compressor with different impeller shapes compressing water vapor as refrigerant was investigated. The numerical simulation focuses on the fluid flow from compressor impeller inlet to outlet. The overall performance level and range are predicted. Different blade patterns with different hub sizes were compared regarding the aerodynamic performance. Independent of the blade pattern, in this numerical investigation the largest hub diameter shows the highest pressure ratio and efficiency at narrowest operating range.

Suggested Citation

  • Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant," Energy, Elsevier, vol. 36(5), pages 2773-2781.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2773-2781
    DOI: 10.1016/j.energy.2011.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schiffmann, J. & Favrat, D., 2010. "Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications," Energy, Elsevier, vol. 35(1), pages 436-450.
    2. Ji, MyoungKuk & Utomo, Tony & Woo, JuSik & Lee, YongHun & Jeong, HyoMin & Chung, HanShik, 2010. "CFD investigation on the flow structure inside thermo vapor compressor," Energy, Elsevier, vol. 35(6), pages 2694-2702.
    3. Benini, Ernesto & Biollo, Roberto, 2007. "Aerodynamics of swept and leaned transonic compressor-rotors," Applied Energy, Elsevier, vol. 84(10), pages 1012-1027, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    2. Sharifi, Navid & Boroomand, Masoud & Kouhikamali, Ramin, 2012. "Wet steam flow energy analysis within thermo-compressors," Energy, Elsevier, vol. 47(1), pages 609-619.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingming Dong & Weining Wang & Zhitao Han & Hongbin Ma & Yangbo Deng & Fengmin Su & Xinxiang Pan, 2018. "Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source," Energies, MDPI, vol. 11(9), pages 1-13, August.
    2. Roberto Capata & Matteo Saracchini, 2018. "Experimental Campaign Tests on Ultra Micro Gas Turbines, Fuel Supply Comparison and Optimization," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Sharifi, Navid & Boroomand, Masoud & Kouhikamali, Ramin, 2012. "Wet steam flow energy analysis within thermo-compressors," Energy, Elsevier, vol. 47(1), pages 609-619.
    4. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    5. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    6. Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant," Applied Energy, Elsevier, vol. 88(9), pages 3156-3168.
    7. Diango, A. & Perilhon, C. & Descombes, G. & Danho, E., 2011. "Application of exergy balances for the optimization of non-adiabatic small turbomachines operation," Energy, Elsevier, vol. 36(5), pages 2924-2936.
    8. Yang Tang & Peng Zhao & Xiaoyu Fang & Guorong Wang & Lin Zhong & Xushen Li, 2022. "Numerical Simulation on Erosion Wear Law of Pressure-Controlled Injection Tool in Solid Fluidization Exploitation of the Deep-Water Natural Gas Hydrate," Energies, MDPI, vol. 15(15), pages 1-17, July.
    9. Li, Zhihui & Liu, Yanming, 2017. "Blade-end treatment for axial compressors based on optimization method," Energy, Elsevier, vol. 126(C), pages 217-230.
    10. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    11. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel, 2021. "Analytical prediction of Reynolds-number effects on miniaturized centrifugal compressors under off-design conditions," Energy, Elsevier, vol. 227(C).
    12. Zhu, Hongjun & Lin, Pengzhi & Pan, Qian, 2014. "A CFD (computational fluid dynamic) simulation for oil leakage from damaged submarine pipeline," Energy, Elsevier, vol. 64(C), pages 887-899.
    13. Feng, Haodong & Yao, Ailing & Han, Qingyang & Zhang, Hailun & Jia, Lei & Sun, Wenxu, 2024. "Effect of droplets in the primary flow on ejector performance of MED-TVC systems," Energy, Elsevier, vol. 293(C).
    14. Sharifi, Navid & Sharifi, Majid, 2014. "Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry," Energy, Elsevier, vol. 66(C), pages 860-867.
    15. Ahmadpour, A. & Noori Rahim Abadi, S.M.A. & Meyer, J.P., 2017. "On the performance enhancement of thermo-compressor and steam turbine blade cascade in the presence of spontaneous nucleation," Energy, Elsevier, vol. 119(C), pages 675-693.
    16. Lu, Hanan & Li, Qiushi & Pan, Tianyu, 2016. "Optimization of cantilevered stators in an industrial multistage compressor to improve efficiency," Energy, Elsevier, vol. 106(C), pages 590-601.
    17. Ariafar, Kavous & Buttsworth, David & Al-Doori, Ghassan & Sharifi, Navid, 2016. "Mixing layer effects on the entrainment ratio in steam ejectors through ideal gas computational simulations," Energy, Elsevier, vol. 95(C), pages 380-392.
    18. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    19. Ruoyu Wang & Xianjun Yu & Baojie Liu & Guangfeng An, 2022. "Effects of Loading Level on the Variation of Flow Losses in Subsonic Axial Compressors," Energies, MDPI, vol. 15(17), pages 1-21, August.
    20. Demierre, J. & Henchoz, S. & Favrat, D., 2012. "Prototype of a thermally driven heat pump based on integrated Organic Rankine Cycles (ORC)," Energy, Elsevier, vol. 41(1), pages 10-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2773-2781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.