IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i12p1913-1921.html
   My bibliography  Save this article

Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed

Author

Listed:
  • Hamed, Ahmed M.

Abstract

This paper presents an experimental investigation on the adsorption and desorption operations in an inclined-fluidized bed using silica gel as the working desiccant. The experimental system involves a circular glass tube containing the particles of silica gel, which is tested at an inclination angle of 45°. The moisture capacity of the bed is measured using a gravimetric technique. Process air at nearly constant ambient parameters (humidity and temperature) and different values of flow rate are used during adsorption. Moisture concentration in the bed is analyzed through visual observation of the color of silica gel particles. Experimental measurements indicate that the regeneration and adsorption rates are highly dependent on the air stream velocity. A satisfactory regeneration rate is confirmed at regeneration temperature as low as 90°C when inclined-fluidized bed is applied. The transient-state moisture transfer rates during adsorption and desorption are presented. Finally, observation of the movement and color of the particles in the bed show regular circulation and homogenous distribution of moisture concentration.

Suggested Citation

  • Hamed, Ahmed M., 2005. "Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed," Renewable Energy, Elsevier, vol. 30(12), pages 1913-1921.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:12:p:1913-1921
    DOI: 10.1016/j.renene.2005.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105000133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamed, Ahmed M., 2002. "Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed," Renewable Energy, Elsevier, vol. 27(4), pages 525-541.
    2. Hamed, Ahmed M., 2003. "Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems," Renewable Energy, Elsevier, vol. 28(13), pages 2099-2111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, T.S. & Zhang, J.Y. & Dai, Y.J. & Wang, R.Z., 2017. "Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger," Energy, Elsevier, vol. 141(C), pages 149-158.
    2. Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
    3. Liang, Jyun-De & Hsu, Chien-Yeh & Hung, Tai-Chih & Chiang, Yuan-Ching & Chen, Sih-Li, 2018. "Geometrical parameters analysis of improved circulating inclined fluidized beds for general HVAC duct systems," Applied Energy, Elsevier, vol. 230(C), pages 784-793.
    4. Zouaoui, Ahlem & Zili-Ghedira, Leila & Ben Nasrallah, Sassi, 2016. "Open solid desiccant cooling air systems: A review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 889-917.
    5. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2013. "Performance analysis of a new kind of heat pump-driven outdoor air processor using solid desiccant," Renewable Energy, Elsevier, vol. 57(C), pages 101-110.
    6. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    7. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    8. Hamed, Ahmed M. & Abd El Rahman, Walaa R. & El-Emam, S.H., 2010. "Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed," Energy, Elsevier, vol. 35(6), pages 2468-2483.
    9. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    11. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    2. Hamed, Ahmed M. & Khalil, A. & Kabeel, A.E. & Bassuoni, M.M. & Elzahaby, A.M., 2005. "Performance analysis of dehumidification rotating wheel using liquid desiccant," Renewable Energy, Elsevier, vol. 30(11), pages 1689-1712.
    3. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    4. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    6. Mawire, A. & McPherson, M. & van den Heetkamp, R.R.J., 2009. "Thermal performance of a small oil-in-glass tube thermal energy storage system during charging," Energy, Elsevier, vol. 34(7), pages 838-849.
    7. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    8. Kabeel, A.E., 2009. "Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications," Renewable Energy, Elsevier, vol. 34(1), pages 255-265.
    9. Hamed, Ahmed M., 2003. "Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems," Renewable Energy, Elsevier, vol. 28(13), pages 2099-2111.
    10. Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
    11. Kabeel, A.E., 2007. "Solar powered air conditioning system using rotary honeycomb desiccant wheel," Renewable Energy, Elsevier, vol. 32(11), pages 1842-1857.
    12. Wansheng Yang & Hao Deng & Zhangyuan Wang & Xudong Zhao & Song He, 2017. "Performance Investigation of the Novel Solar-Powered Dehumidification Window for Residential Buildings," Energies, MDPI, vol. 10(9), pages 1-17, September.
    13. Mawire, A. & McPherson, M. & Heetkamp, R.R.J. van den & Mlatho, S.J.P., 2009. "Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1246-1252, July.
    14. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    15. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    16. Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
    17. Hamed, Ahmed M. & Abd El Rahman, Walaa R. & El-Emam, S.H., 2010. "Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed," Energy, Elsevier, vol. 35(6), pages 2468-2483.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:12:p:1913-1921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.