IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp545-553.html
   My bibliography  Save this article

Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications

Author

Listed:
  • Avasarala, Bharat
  • Haldar, Pradeep

Abstract

Titanium nitride (TiN) is a promising material that has a higher potential for increasing electrocatalyst durability in PEM (proton exchange membrane) fuel cells. In this report we provide an explanation for the higher catalytic performance of titanium nitride nanoparticles (TiN NP) based electrocatalyst (Pt/TiN) when compared to that of Pt/C, using XPS (X-ray photoelectron spectroscopy). We also compare its durability with that of the conventional Pt/C electrocatalyst and explain its degradation mechanism under fuel cell conditions. Unlike Pt/C which degrades significantly via the Pt agglomeration and carbon support corrosion mechanisms, we show that Pt/TiN degrades predominantly via Pt agglomeration mechanism. TiN has a higher resistance to corrosion than carbon (C) under electrochemical conditions; as a result catalyst support corrosion mechanism plays a minor role in the degradation of Pt/TiN. For a given mass and particle diameter, TiN has higher no. of catalyst support particles than C due its higher material density. As a result it is hypothesized that, for the same amount of catalyst loading on both supports, the Pt/TiN has a higher Pt particle density on its surface compared to Pt/C and can result in a faster rate of Pt particle agglomeration during the electrocatalyst degradation. This hypothesis is tested theoretically by calculating the support to catalyst particle ratio. It is observed that the support to catalyst particle ratio is 1: 21 for 20 wt% Pt/C and 1: 60 for 20 wt% Pt/TiN. The hypothesis is also tested experimentally by two different methods, the first of which is by measuring and comparing the Pt particle sizes after subjecting the Pt/TiN and Pt/C to accelerated durability tests (ADT: 0–1.3 V RHE (reversible hydrogen electrode), 1100 cyc). Secondly, the Pt particle density on the electrocatalysts is changed by varying the amount of Pt loading (10 wt% and 30 wt%) and the Pt particle size is measured at the end of ADT. Both methods lead to the same conclusion that Pt/TiN has a significantly higher Pt particle size at the end of ADT (compared to Pt/C) indicating towards its increased rate of Pt agglomeration mechanism. Furthermore, a new approach is suggested where the oxynitride layer is grown on Pt/TiN resulting in partial encapsulation of Pt particles on the surface of TiN catalyst support thereby reducing the Pt agglomeration during fuel cell operation.

Suggested Citation

  • Avasarala, Bharat & Haldar, Pradeep, 2013. "Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications," Energy, Elsevier, vol. 57(C), pages 545-553.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:545-553
    DOI: 10.1016/j.energy.2013.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    2. Penner, S.S. & Appleby, A.J. & Baker, B.S. & Bates, J.L. & Buss, L.B. & Dollard, W.J. & Fartis, P.J. & Gillis, E.A. & Gunsher, J.A. & Khandkar, A. & Krumpelt, M. & O'Sullivan, J.B. & Runte, G. & Savin, 1995. "Commercialization of fuel cells," Energy, Elsevier, vol. 20(5), pages 331-470.
    3. Appleby, A.J., 1996. "Fuel cell technology: Status and future prospects," Energy, Elsevier, vol. 21(7), pages 521-653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    2. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    3. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    4. Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
    5. Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2014. "Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack," Energy, Elsevier, vol. 72(C), pages 547-553.
    6. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    7. Hidalgo, Diana & Tommasi, Tonia & Cauda, Valentina & Porro, Samuele & Chiodoni, Angelica & Bejtka, Katarzyna & Ruggeri, Bernardo, 2014. "Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells," Energy, Elsevier, vol. 71(C), pages 615-623.
    8. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    9. Roudbari, Mohsen Najafi & Ojani, Reza & Raoof, Jahan Bakhsh, 2019. "Performance improvement of polymer fuel cell by simultaneously inspection of catalyst loading, catalyst content and ionomer using home-made cathodic half-cell and response surface method," Energy, Elsevier, vol. 173(C), pages 151-161.
    10. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    11. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    12. Kakaei, Karim & Gharibi, Hussien, 2014. "Palladium nanoparticle catalysts synthesis on graphene in sodium dodecyl sulfate for oxygen reduction reaction," Energy, Elsevier, vol. 65(C), pages 166-171.
    13. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stempien, Jan Pawel & Sun, Qiang & Chan, Siew Hwa, 2013. "Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions," Energy, Elsevier, vol. 55(C), pages 647-657.
    2. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    3. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    4. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    5. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    6. Daria Kolbantseva & Dmitriy Treschev & Milana Trescheva & Irina Anikina & Yuriy Kolbantsev & Konstantin Kalmykov & Alena Aleshina & Aleksandr Kalyutik & Iaroslav Vladimirov, 2022. "Analysis of Technologies for Hydrogen Consumption, Transition and Storage at Operating Thermal Power Plants," Energies, MDPI, vol. 15(10), pages 1-30, May.
    7. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    8. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    9. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    10. Ravichandran, S. & Venkatkarthick, R. & Sankari, A. & Vasudevan, S. & Jonas Davidson, D. & Sozhan, G., 2014. "Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach," Energy, Elsevier, vol. 68(C), pages 148-151.
    11. Wu, Liang & He, Yuehui & Lei, Ting & Nan, Bo & Xu, Nanping & Zou, Jin & Huang, Baiyun & Liu, C.T., 2013. "Characterization of the porous Ni3Al–Mo electrodes during hydrogen generation from alkaline water electrolysis," Energy, Elsevier, vol. 63(C), pages 216-224.
    12. Roberto Schaeffer & Jeffrey Logan & Alexandre Szklo & William Chandler & João de Souza Marques, 2001. "Brazil's Electric Power Choices and Their Corresponding Carbon Emissions Implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 6(1), pages 47-69, March.
    13. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    14. Zhang, Houcheng & Lin, Guoxing & Chen, Jincan, 2011. "The performance analysis and multi-objective optimization of a typical alkaline fuel cell," Energy, Elsevier, vol. 36(7), pages 4327-4332.
    15. Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.
    16. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    17. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.
    18. Papurello, Davide & Lanzini, Andrea & Drago, Davide & Leone, Pierluigi & Santarelli, Massimo, 2016. "Limiting factors for planar solid oxide fuel cells under different trace compound concentrations," Energy, Elsevier, vol. 95(C), pages 67-78.
    19. D.M.F. Santos & J.R.B. Lourenço & D. Macciò & A. Saccone & C.A.C. Sequeira & J.L. Figueiredo, 2020. "Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys," Energies, MDPI, vol. 13(7), pages 1-21, April.
    20. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:545-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.