IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3671-d817599.html
   My bibliography  Save this article

Analysis of Technologies for Hydrogen Consumption, Transition and Storage at Operating Thermal Power Plants

Author

Listed:
  • Daria Kolbantseva

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Dmitriy Treschev

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Milana Trescheva

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Irina Anikina

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Yuriy Kolbantsev

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Konstantin Kalmykov

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Alena Aleshina

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Aleksandr Kalyutik

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Iaroslav Vladimirov

    (Higher School of Nuclear and Thermal Power Engineering, Institute of Power Engineering, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

Abstract

The paper analyses operating and developing technologies for hydrogen implementation, transition, and storage at operating thermal power plants (TPPs) to make recommendations for realization of perspective projects for evaluation of the use of hydrogen as a fuel. Over the medium-term horizon of the next decade, it is suggested that using the technology of burning a mixture of hydrogen and natural gas in gas turbines and gas-and-oil-fired boilers in volume fractions of 20% and 80%, respectively, be implemented at operating gas fired TPPs. We consider the construction of the liquefied hydrogen and natural gas storage warehouses for the required calculated quantities of the gas mixture as a reserve energy fuel for operating the TPPs. We consider the possibility of the reserve liquid fuel system being replaced by the technology involving storage of liquefied hydrogen in combination with natural gas. An economic assessment of the storing cost of reserve fuel on the TPP site is given. The paper suggests that the methane-hydrogen mixture be supplied to the TPP site by two independent gas pipelines for the possibility of using the mixture as the main fuel and to exclude fuel storage at the plant.

Suggested Citation

  • Daria Kolbantseva & Dmitriy Treschev & Milana Trescheva & Irina Anikina & Yuriy Kolbantsev & Konstantin Kalmykov & Alena Aleshina & Aleksandr Kalyutik & Iaroslav Vladimirov, 2022. "Analysis of Technologies for Hydrogen Consumption, Transition and Storage at Operating Thermal Power Plants," Energies, MDPI, vol. 15(10), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3671-:d:817599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lorenzo Bolfo & Francesco Devia & Guglielmo Lomonaco, 2021. "Nuclear Hydrogen Production: Modeling and Preliminary Optimization of a Helical Tube Heat Exchanger," Energies, MDPI, vol. 14(11), pages 1-24, May.
    2. Carapellucci, Roberto & Giordano, Lorena, 2019. "Upgrading existing gas-steam combined cycle power plants through steam injection and methane steam reforming," Energy, Elsevier, vol. 173(C), pages 229-243.
    3. Appleby, A.J., 1996. "Fuel cell technology: Status and future prospects," Energy, Elsevier, vol. 21(7), pages 521-653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Kalmykov & Irina Anikina & Daria Kolbantseva & Milana Trescheva & Dmitriy Treschev & Aleksandr Kalyutik & Alena Aleshina & Iaroslav Vladimirov, 2022. "Use of Heat Pumps in the Hydrogen Production Cycle at Thermal Power Plants," Sustainability, MDPI, vol. 14(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Rodríguez-Prieto & Ana María Camacho & Carlos Mendoza & John Kickhofel & Guglielmo Lomonaco, 2021. "Evolution of Standardized Specifications on Materials, Manufacturing and In-Service Inspection of Nuclear Reactor Vessels," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    2. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    3. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    4. Konstantin Kalmykov & Irina Anikina & Daria Kolbantseva & Milana Trescheva & Dmitriy Treschev & Aleksandr Kalyutik & Alena Aleshina & Iaroslav Vladimirov, 2022. "Use of Heat Pumps in the Hydrogen Production Cycle at Thermal Power Plants," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    5. Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
    6. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    7. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    8. Ouyang, Tiancheng & Xu, Jisong & Qin, Peijia & Cheng, Liang, 2022. "Utilizing flue gas low-grade waste heat and furnace excess heat to produce syngas and sulfuric acid recovery in coal-fired power plant," Energy, Elsevier, vol. 258(C).
    9. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    10. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    11. Odi Fawwaz Alrebei & Philip Bowen & Agustin Valera Medina, 2020. "Parametric Study of Various Thermodynamic Cycles for the Use of Unconventional Blends," Energies, MDPI, vol. 13(18), pages 1-16, September.
    12. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    13. Yangping Zhou & Zhengwei Gu & Yujie Dong & Fangzhou Xu & Zuoyi Zhang, 2021. "Combining Dual Fluidized Bed and High-Temperature Gas-Cooled Reactor for Co-Producing Hydrogen and Synthetic Natural Gas by Biomass Gasification," Energies, MDPI, vol. 14(18), pages 1-21, September.
    14. Roberto Schaeffer & Jeffrey Logan & Alexandre Szklo & William Chandler & João de Souza Marques, 2001. "Brazil's Electric Power Choices and Their Corresponding Carbon Emissions Implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 6(1), pages 47-69, March.
    15. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    16. Zhang, Houcheng & Lin, Guoxing & Chen, Jincan, 2011. "The performance analysis and multi-objective optimization of a typical alkaline fuel cell," Energy, Elsevier, vol. 36(7), pages 4327-4332.
    17. Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.
    18. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    19. Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
    20. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3671-:d:817599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.