IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v154y2018icp319-327.html
   My bibliography  Save this article

An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion

Author

Listed:
  • Li, Pin-Wei
  • Chyang, Chien-Song
  • Ni, Hung-Wen

Abstract

The relative importance of char-N and volatile-N on NOx emissions is examined in a pilot-scale fluidized-bed combustor. Coke and toluene are used as the base fuels, and nitrogenous compounds (nitrobenzene, pyridine, and pyrrole) are mixed with them alternatively to study the effect of nitrogen origin on NOx formation and reduction. The results show that NOx evolution would be greatly changed if the nitrogenous species are present in the volatile, and NOx reduction inside the combustor may be the key factor that determines the final emissions. When nitrobenzene is employed, the conversion of volatile-N to NOx is 13.17–15.42%, while that of char-N is 4.49–7.59% in the bed temperature of 750–900 °C, indicating that nitrogen present in volatiles may be much more prone to elicit higher NOx. Moreover, the volatile-N conversion to NOx is always greater than that of char-N, regardless of the nitrogen functionality. However, the degree of formation and reduction of NOx would depend firmly on the functional groups of nitrogen, which are nitro, pyridine, and pyrrole in this case. NOx reduction mainly occurs in the splash zone, and NOx generated from char-N is reduced in a manner dissimilar to that of volatile-N.

Suggested Citation

  • Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.
  • Handle: RePEc:eee:energy:v:154:y:2018:i:c:p:319-327
    DOI: 10.1016/j.energy.2018.04.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.
    2. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    3. Cao, Songshan & Duan, Feng & Zhang, Lihui & Chyang, ChienSong & Yang, ChihYun, 2017. "Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels," Energy, Elsevier, vol. 139(C), pages 862-870.
    4. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    5. Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
    6. Duan, Feng & Chyang, Chien-Song & Zhang, Li-hui & Chi, Yi-Ting, 2015. "Effect of the molecular structure of nitrogen compounds on the pollutant formation in a bubbling fluidized-bed combustor," Energy, Elsevier, vol. 83(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Maobo & Wang, Chang’an & Zhao, Lin & Wang, Pengqian & Wang, Chaowei & Che, Defu, 2020. "Experimental and kinetics study of NO heterogeneous reduction by the blends of pyrolyzed and gasified semi-coke," Energy, Elsevier, vol. 207(C).
    2. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Gong, Zheng & Liu, Hao, 2020. "Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Songshan & Duan, Feng & Zhang, Lihui & Chyang, ChienSong & Yang, ChihYun, 2017. "Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels," Energy, Elsevier, vol. 139(C), pages 862-870.
    2. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.
    3. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Şahan, Duygu & Tuna, Okan, 2018. "Environmental innovation of transportation sector in OECD countries," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 157-170, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    6. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    7. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    8. Yanchun Chen & Botang Han & Wenmei Liu, 2016. "Green technology innovation and energy intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 317-332, November.
    9. Karp, Larry S., 2008. "Correct (and misleading) argument for using market-based pollution control policies," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6030, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    12. Nelson, Kelly P. & Parton, Lee C. & Brown, Zachary S., 2022. "Biofuels policy and innovation impacts: Evidence from biofuels and agricultural patent indicators," Energy Policy, Elsevier, vol. 162(C).
    13. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    14. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    15. Massimiliano Mazzanti & Valeria Costantini & Susanna Mancinelli & Massimilano Corradini, 2011. "Environmental and Innovation Performance in a Dynamic Impure Public Good Framework," Working Papers 201117, University of Ferrara, Department of Economics.
    16. Noailly, Joëlle, 2012. "Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation," Energy Economics, Elsevier, vol. 34(3), pages 795-806.
    17. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    18. Stefan Ambec & Paul Lanoie, 2007. "When and Why Does It Pay To Be Green?," CIRANO Working Papers 2007s-20, CIRANO.
    19. Shang, Hua & Jiang, Li & Pan, Xianyou & Pan, Xiongfeng, 2022. "Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 114(C).
    20. Shahrouz Abolhosseini & Almas Heshmati & Jorn Altmann, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," TEMEP Discussion Papers 2014109, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2014.
    21. Heal, Geoffrey & Tarui, Nori, 2010. "Investment and emission control under technology and pollution externalities," Resource and Energy Economics, Elsevier, vol. 32(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:319-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.