Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.09.116
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ehsan Houshfar & Terese Løvås & Øyvind Skreiberg, 2012. "Experimental Investigation on NO x Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets," Energies, MDPI, vol. 5(2), pages 1-21, February.
- Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
- Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
- Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
- Youssef, Mahmoud A. & Wahid, Seddik S. & Mohamed, Maher A. & Askalany, Ahmed A., 2009. "Experimental study on Egyptian biomass combustion in circulating fluidized bed," Applied Energy, Elsevier, vol. 86(12), pages 2644-2650, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cao, Songshan & Duan, Feng & Zhang, Lihui & Chyang, ChienSong & Yang, ChihYun, 2017. "Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels," Energy, Elsevier, vol. 139(C), pages 862-870.
- Hu, Wanhe & Feng, Zixing & Yang, Jianfei & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures," Energy, Elsevier, vol. 226(C).
- Raquel Pérez-Orozco & David Patiño & Jacobo Porteiro & José Luís Míguez, 2020. "Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
- Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
- Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.
- Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
- Cao, Songshan & Duan, Feng & Zhang, Lihui & Chyang, ChienSong & Yang, ChihYun, 2017. "Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels," Energy, Elsevier, vol. 139(C), pages 862-870.
- Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
- Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
- Nobre, Catarina & Longo, Andrei & Vilarinho, Cândida & Gonçalves, Margarida, 2020. "Gasification of pellets produced from blends of biomass wastes and refuse derived fuel chars," Renewable Energy, Elsevier, vol. 154(C), pages 1294-1303.
- Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
- Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
- Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
- Choi, Yujin & Jun, Hyunji & Shin, Jong Seon & Han, Keun-Hee & Bae, Dal Hee & Hwang, Byung Wook & Kim, Hong Jip & Shun, Dowon, 2020. "Effects of boron compounds on decomposition of chlorides to control clinkers under solid refuse fuel combustion conditions," Energy, Elsevier, vol. 210(C).
- María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
- Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
- Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.
- Karakosta, Charikleia & Psarras, John, 2013. "Understanding CDM potential in the Mediterranean basin: A country assessment of Egypt and Morocco," Energy Policy, Elsevier, vol. 60(C), pages 827-839.
- Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
- Steiner, Maximilian & Anca-Couce, Andrés & Hochenauer, Christoph & Buchmayr, Markus & Scharler, Robert, 2024. "Relevance and prediction of N2O in small-scale multi-fuel biomass furnaces using primary NOx reduction measures," Renewable Energy, Elsevier, vol. 229(C).
- Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
More about this item
Keywords
Secondary gas; Injection mode; Pelletized bamboo; Combustion; Pollutant emissions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:306-316. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.