IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp888-898.html
   My bibliography  Save this article

Theoretical and experimental study of mechanical losses in automotive turbochargers

Author

Listed:
  • Serrano, José Ramón
  • Olmeda, Pablo
  • Tiseira, Andrés
  • García-Cuevas, Luis Miguel
  • Lefebvre, Alain

Abstract

The aim of the present work is to show an approximation, through an experimental and a theoretical study, to quantify the mechanical losses in a turbocharging system. These are linked to the dynamics in the turbo shaft bearings, both axial and radial. Theoretical and experimental methodologies are presented in order to develop a mechanical losses model. The experimental work consists on a measurement campaign in quasi-adiabatic operating conditions, while in the theoretical part, a mathematical model is developed taking into account the radial and the axial bearings. The model uses some assumptions in order to solve the Navier–Stokes equations, leading to a simplified model which includes viscosity and the Reynolds number of the oil film formed on the bearings. The proposed model has shown a good agreement with the experimental data. This paper shows that for quasi-adiabatic conditions, having the turbocharger working at high speed; the mechanical efficiency could be assumed as a constant value close to unity. Nevertheless, the mechanical losses need to be computed for both journal and thrust bearing to get the best results. Although this must be confirmed, simple trends have been obtained when fitting coefficients of the model and basic geometrical parameters of the turbocharger.

Suggested Citation

  • Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:888-898
    DOI: 10.1016/j.energy.2013.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deligant, M. & Podevin, P. & Descombes, G., 2012. "Experimental identification of turbocharger mechanical friction losses," Energy, Elsevier, vol. 39(1), pages 388-394.
    2. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    3. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    4. Fang, Xiande & Xu, Yu, 2011. "Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis," Energy, Elsevier, vol. 36(5), pages 2937-2942.
    5. Marelli, Silvia & Capobianco, Massimo, 2011. "Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application," Energy, Elsevier, vol. 36(1), pages 459-465.
    6. Diango, A. & Perilhon, C. & Descombes, G. & Danho, E., 2011. "Application of exergy balances for the optimization of non-adiabatic small turbomachines operation," Energy, Elsevier, vol. 36(5), pages 2924-2936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
    2. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.
    3. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    4. Payri, Francisco & López, José Javier & Martín, Jaime & Carreño, Ricardo, 2018. "Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration," Energy, Elsevier, vol. 152(C), pages 666-681.
    5. Marco Altosole & Giovanni Benvenuto & Raphael Zaccone & Ugo Campora, 2020. "Comparison of Saturated and Superheated Steam Plants for Waste-Heat Recovery of Dual-Fuel Marine Engines," Energies, MDPI, vol. 13(4), pages 1-21, February.
    6. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    7. Liu, Zheng & Copeland, Colin, 2018. "New method for mapping radial turbines exposed to pulsating flows," Energy, Elsevier, vol. 162(C), pages 1205-1222.
    8. Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
    9. Payri, Francisco & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2014. "External heat losses in small turbochargers: Model and experiments," Energy, Elsevier, vol. 71(C), pages 534-546.
    10. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    11. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    12. Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    13. Luján, José Manuel & Serrano, José Ramon & Piqueras, Pedro & Diesel, Bárbara, 2019. "Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature," Applied Energy, Elsevier, vol. 240(C), pages 409-423.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salameh, Georges & Chesse, Pascal & Chalet, David, 2019. "Mass flow extrapolation model for automotive turbine and confrontation to experiments," Energy, Elsevier, vol. 167(C), pages 325-336.
    2. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    3. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    4. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    5. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
    6. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    7. Bahiuddin, Irfan & Mazlan, Saiful Amri & Imaduddin, Fitrian & Ubaidillah,, 2017. "A new control-oriented transient model of variable geometry turbocharger," Energy, Elsevier, vol. 125(C), pages 297-312.
    8. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    9. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    10. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun & Chen, Hua & Martinez-Botas, Ricardo & Yang, Mingyang, 2017. "A one-dimensional unsteady performance model for turbocharger turbines," Energy, Elsevier, vol. 132(C), pages 341-355.
    11. Serrano, José Ramón & Tiseira, Andrés & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin & Tartoussi, Hadi, 2017. "Radial turbine performance measurement under extreme off-design conditions," Energy, Elsevier, vol. 125(C), pages 72-84.
    12. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    13. Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2016. "Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation," Energy, Elsevier, vol. 112(C), pages 264-272.
    14. Tregenza, Owen & Olshina, Noam & Hield, Peter & Manzie, Chris & Hulston, Chris, 2022. "A comparison of turbine mass flow models based on pragmatic identification data sets for turbogenerator model development," Energy, Elsevier, vol. 247(C).
    15. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    16. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Damian HADRYŚ & Henryk BĄKOWSKI & Zbigniew STANIK & Andrzej KUBIK, 2019. "Analysis Of Shaft Wear In Turbocharges Of Automotive Vehicles," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 85-96, September.
    18. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    19. Nithesh, K.G. & Chatterjee, Dhiman & Oh, Cheol & Lee, Young-Ho, 2016. "Design and performance analysis of radial-inflow turboexpander for OTEC application," Renewable Energy, Elsevier, vol. 85(C), pages 834-843.
    20. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:888-898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.