IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp409-423.html
   My bibliography  Save this article

Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature

Author

Listed:
  • Luján, José Manuel
  • Serrano, José Ramon
  • Piqueras, Pedro
  • Diesel, Bárbara

Abstract

Worldwide emission regulations are driven the efforts of the automotive industry to meet challenging targets concerning pollution reduction. Nowadays, advances in exhaust aftertreatment systems are primarily required to achieve regulation requirements within the whole engine operating range. Nevertheless, flow parameters, such as the exhaust gas temperature, must be also addressed. This makes engine calibration a fundamental step, but also leads to reconsider the passive design of the exhaust line as a way to improve the engine efficiency. Under this context, a study has been conducted to explore the benefits of heat losses limitation looking for aftertreatment inlet temperature increase at the same time fuel economy is improved. To do so, a baseline diesel engine has been modeled using a gas dynamic software taking special care of the heat transfer processes in the exhaust. The investigation covers the definition of different strategies for exhaust ports and turbine thermal insulation, which are evaluated in a representative range of steady-state operating conditions. As a first step, the theoretical limits and representative technology solutions are considered for each exhaust region. Then, a combination of the most promising strategies has been computed to provide a comprehensive database and analysis of the potential of passive exhaust heat losses control.

Suggested Citation

  • Luján, José Manuel & Serrano, José Ramon & Piqueras, Pedro & Diesel, Bárbara, 2019. "Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature," Applied Energy, Elsevier, vol. 240(C), pages 409-423.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:409-423
    DOI: 10.1016/j.apenergy.2019.02.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930340X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
    2. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    3. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    4. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    5. Li, Tie & Yin, Tao & Wang, Bin, 2017. "Anatomy of the cooled EGR effects on soot emission reduction in boosted spark-ignited direct-injection engines," Applied Energy, Elsevier, vol. 190(C), pages 43-56.
    6. Lee, Sang-Jin & Jeong, Soo-Jeong & Kim, Woo-Seung, 2009. "Numerical design of the diesel particulate filter for optimum thermal performances during regeneration," Applied Energy, Elsevier, vol. 86(7-8), pages 1124-1135, July.
    7. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    8. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    9. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    10. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    11. Dardiotis, Christos & Martini, Giorgio & Marotta, Alessandro & Manfredi, Urbano, 2013. "Low-temperature cold-start gaseous emissions of late technology passenger cars," Applied Energy, Elsevier, vol. 111(C), pages 468-478.
    12. Verschaeren, Roel & Verhelst, Sebastian, 2018. "Increasing exhaust temperature to enable after-treatment operation on a two-stage turbo-charged medium speed marine diesel engine," Energy, Elsevier, vol. 147(C), pages 681-687.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Wu & Guoda Feng & Yuelin Li & Tao Ling & Xuejun Peng & Zhilai Su & Xiaohuan Zhao, 2024. "A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches," Energies, MDPI, vol. 17(3), pages 1-32, January.
    2. Serrano, J.R. & Arnau, F.J. & Bares, P. & Gomez-Vilanova, A. & Garrido-Requena, J. & Luna-Blanca, M.J. & Contreras-Anguita, F.J., 2021. "Analysis of a novel concept of 2-stroke rod-less opposed pistons engine (2S-ROPE): Testing, modelling, and forward potential," Applied Energy, Elsevier, vol. 282(PA).
    3. Mohsen Mirzaeian & Simon Langridge, 2021. "Creating a Virtual Test Bed Using a Dynamic Engine Model with Integrated Controls to Support in-the-Loop Hardware and Software Optimization and Calibration," Energies, MDPI, vol. 14(3), pages 1-18, January.
    4. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    5. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    6. Beichuan Hong & Varun Venkataraman & Andreas Cronhjort, 2021. "Numerical Analysis of Engine Exhaust Flow Parameters for Resolving Pre-Turbine Pulsating Flow Enthalpy and Exergy," Energies, MDPI, vol. 14(19), pages 1-24, September.
    7. Sheng Yin & Jimin Ni & Houchuan Fan & Xiuyong Shi & Rong Huang, 2022. "A Study of Evaluation Method for Turbocharger Turbine Based on Joint Operation Curve," Sustainability, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torregrosa, Antonio José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2017. "Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters," Energy, Elsevier, vol. 119(C), pages 887-900.
    2. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    3. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    4. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    5. José R. Serrano & Francisco J. Arnau & Jaime Martín & Ángel Auñón, 2020. "Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine," Energies, MDPI, vol. 13(17), pages 1-26, September.
    6. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    7. Bermúdez, V. & Serrano, J.R. & Piqueras, P. & García-Afonso, O., 2015. "Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters," Applied Energy, Elsevier, vol. 140(C), pages 234-245.
    8. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    9. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    10. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    11. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    12. Monika Andrych-Zalewska & Zdzislaw Chlopek & Jerzy Merkisz & Jacek Pielecha, 2023. "Impact of the Internal Combustion Engine Thermal State during Start-Up on the Exhaust Emissions in the Homologation Test," Energies, MDPI, vol. 16(4), pages 1-16, February.
    13. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    14. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    15. Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2016. "Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation," Energy, Elsevier, vol. 112(C), pages 264-272.
    16. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    17. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    18. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    19. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    20. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:409-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.