IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp72-84.html
   My bibliography  Save this article

Radial turbine performance measurement under extreme off-design conditions

Author

Listed:
  • Serrano, José Ramón
  • Tiseira, Andrés
  • García-Cuevas, Luis Miguel
  • Inhestern, Lukas Benjamin
  • Tartoussi, Hadi

Abstract

During automotive urban driving conditions and future homologation cycles, automotive radial turbines experience transient conditions, whereby the same operate at very high blade speed ratios and, thus, at very low power outputs. Under those conditions, the turbine power output might not be enough to feed the mechanical power needs of the compressor. Typical fast one-dimensional full engine simulations rely on steady-state performance maps to characterize the turbocharger. Due to the restricting compressor braking power, extreme off-design measurements cannot be obtained in standard gas stands without using an external brake instead of the compressor or without using a motor attached to the turbocharger shaft. Such turbocharger assemblies cause shaft balancing issues inherent to the connection to a brake operating at high rotational speeds or need basic changes of the turbocharger geometry. This paper presents a novel approach for turbine performance map measurements at very low expansion ratio and very low mass flow without the aforementioned issues. The method uses the turbocharger compressor as a centrifugal turbine, providing mechanical power to the shaft and enabling turbine performance measurements from points of very high expansion ratio up to very low pressure ratio. It is even possible to measure at almost zero flow rate in the turbine when it consumes shaft power instead of producing it. This experimental procedure that can be applied to whatever turbocharger produces valuable information for the development and validation of turbine performance models aiming to extrapolate its behaviour at off-design conditions.

Suggested Citation

  • Serrano, José Ramón & Tiseira, Andrés & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin & Tartoussi, Hadi, 2017. "Radial turbine performance measurement under extreme off-design conditions," Energy, Elsevier, vol. 125(C), pages 72-84.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:72-84
    DOI: 10.1016/j.energy.2017.02.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deligant, M. & Podevin, P. & Descombes, G., 2012. "Experimental identification of turbocharger mechanical friction losses," Energy, Elsevier, vol. 39(1), pages 388-394.
    2. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    3. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    4. Payri, Francisco & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2014. "External heat losses in small turbochargers: Model and experiments," Energy, Elsevier, vol. 71(C), pages 534-546.
    5. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Omar Tiseira Izaguirre & Roberto Navarro García & Lukas Benjamin Inhestern & Natalia Hervás Gómez, 2020. "Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Inhestern, Lukas Benjamin & Peitsch, Dieter & Paniagua, Guillermo, 2024. "Flow irreversibility and heat transfer effects on turbine efficiency," Applied Energy, Elsevier, vol. 353(PA).
    3. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    4. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    5. Serrano, José Ramón & Navarro, Roberto & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2018. "Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio," Energy, Elsevier, vol. 147(C), pages 1299-1310.
    6. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    7. Salameh, Georges & Chesse, Pascal & Chalet, David, 2019. "Mass flow extrapolation model for automotive turbine and confrontation to experiments," Energy, Elsevier, vol. 167(C), pages 325-336.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    2. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    3. Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2016. "Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation," Energy, Elsevier, vol. 112(C), pages 264-272.
    4. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    5. Romagnoli, A. & Manivannan, A. & Rajoo, S. & Chiong, M.S. & Feneley, A. & Pesiridis, A. & Martinez-Botas, R.F., 2017. "A review of heat transfer in turbochargers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1442-1460.
    6. Salameh, Georges & Chesse, Pascal & Chalet, David, 2019. "Mass flow extrapolation model for automotive turbine and confrontation to experiments," Energy, Elsevier, vol. 167(C), pages 325-336.
    7. Tanda, Giovanni & Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2017. "An experimental investigation of internal heat transfer in an automotive turbocharger compressor," Applied Energy, Elsevier, vol. 193(C), pages 531-539.
    8. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    9. José R. Serrano & Francisco J. Arnau & Jaime Martín & Ángel Auñón, 2020. "Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine," Energies, MDPI, vol. 13(17), pages 1-26, September.
    10. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    11. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    12. Andrés Omar Tiseira Izaguirre & Roberto Navarro García & Lukas Benjamin Inhestern & Natalia Hervás Gómez, 2020. "Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Tregenza, Owen & Olshina, Noam & Hield, Peter & Manzie, Chris & Hulston, Chris, 2022. "A comparison of turbine mass flow models based on pragmatic identification data sets for turbogenerator model development," Energy, Elsevier, vol. 247(C).
    14. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    15. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    16. Damian HADRYŚ & Henryk BĄKOWSKI & Zbigniew STANIK & Andrzej KUBIK, 2019. "Analysis Of Shaft Wear In Turbocharges Of Automotive Vehicles," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 85-96, September.
    17. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.
    18. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    19. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    20. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:72-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.