IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p264-276.html
   My bibliography  Save this article

Minimisation of a heat exchanger networks' cost over its lifetime

Author

Listed:
  • Nemet, Andreja
  • Klemeš, Jiří Jaromír
  • Kravanja, Zdravko

Abstract

The optimal design of heat exchanger networks (HENs) has a great influence on the profitability of a plant. The optimisation is based on trade-offs between investment and operational cost. The full lifetime of the HEN and future utility prices have to be considered rather than optimising HEN on a yearly basis using current utility prices. Single-period optimisation and synthesis models for HENs reflect current utility prices only. These prices can fluctuate rather quickly and the optimal solution may be very different from a year to year. Deterministic and stochastic multi-period mixed-integer nonlinear programming (MINLP) models for HEN synthesis have been developed to account for future price projections, where the utility cost coefficients are forecasted for the lifetime of the process. An optimal design is then determined for each projection and these designs are compared against a design with fixed current prices by applying the Incremental Net Present Value and other economic measures. In case studies the difference between utility consumption, using previous optimisation methods and new, were significant; e.g. in Case Study 2 the utility savings were 18.4% for hot and 32.6% for cold utility yielding an increase of the Net Present Value (NPV) by 7.8%.

Suggested Citation

  • Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Minimisation of a heat exchanger networks' cost over its lifetime," Energy, Elsevier, vol. 45(1), pages 264-276.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:264-276
    DOI: 10.1016/j.energy.2012.02.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soltani, Hadi & Shafiei, Sirous, 2011. "Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods," Energy, Elsevier, vol. 36(5), pages 2381-2391.
    2. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Lixia & Liu, Yongzhong & Wu, Le, 2016. "Synthesis of multi-period heat exchanger networks based on features of sub-period durations," Energy, Elsevier, vol. 116(P2), pages 1302-1311.
    2. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    3. Pavão, Leandro V. & Pozo, Carlos & Costa, Caliane B.B. & Ravagnani, Mauro A.S.S. & Jiménez, Laureano, 2017. "Financial risks management of heat exchanger networks under uncertain utility costs via multi-objective optimization," Energy, Elsevier, vol. 139(C), pages 98-117.
    4. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    5. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Aldawi, Fayez & Moria, Hazim & Anqi, Ali E. & Jarad, Fahd, 2022. "Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers," Energy, Elsevier, vol. 239(PC).
    6. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    7. Huang, Kefeng & Karimi, I.A., 2016. "Work-heat exchanger network synthesis (WHENS)," Energy, Elsevier, vol. 113(C), pages 1006-1017.
    8. Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
    9. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    10. Chen, Xiaohui & Zheng, Danxing & Chen, Juan, 2014. "An approach to obtain Heat Integration scheme with higher viability for complex system," Energy, Elsevier, vol. 78(C), pages 720-731.
    11. Walmsley, Timothy Gordon & Ong, Benjamin H.Y. & Klemeš, Jiří Jaromír & Tan, Raymond R. & Varbanov, Petar Sabev, 2019. "Circular Integration of processes, industries, and economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 507-515.
    12. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    3. Wu, Zhixiang & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Cai, Cunguang, 2019. "Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory," Energy, Elsevier, vol. 181(C), pages 974-984.
    4. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    5. Heidar Sadeghzadeh & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm," Sustainability, MDPI, vol. 7(9), pages 1-17, August.
    6. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    7. Sun, Jin & Feng, Xiao & Wang, Yufei & Deng, Chun & Chu, Khim Hoong, 2014. "Pump network optimization for a cooling water system," Energy, Elsevier, vol. 67(C), pages 506-512.
    8. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    9. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    10. Pan, Ming & Jamaliniya, Sara & Smith, Robin & Bulatov, Igor & Gough, Martin & Higley, Tom & Droegemueller, Peter, 2013. "New insights to implement heat transfer intensification for shell and tube heat exchangers," Energy, Elsevier, vol. 57(C), pages 208-221.
    11. Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
    12. Daniali, Omid Ali & Toghraie, Davood & Eftekhari, S. Ali, 2020. "Thermo-hydraulic and economic optimization of Iranol refinery oil heat exchanger with Copper oxide nanoparticles using MOMBO," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Chatterjee, Abheek & Layton, Astrid, 2020. "Mimicking nature for resilient resource and infrastructure network design," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Tahouni, Nassim & Khoshchehreh, Rezvaneh & Panjeshahi, M. Hassan, 2014. "Debottlenecking of condensate stabilization unit in a gas refinery," Energy, Elsevier, vol. 77(C), pages 742-751.
    15. Hazarika, Saheera Azmi & Bhanja, Dipankar & Nath, Sujit & Kundu, Balaram, 2015. "Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer," Energy, Elsevier, vol. 84(C), pages 303-316.
    16. Souza, Rachitha D & Khanam, Shabina & Mohanty, Bikash, 2016. "Synthesis of heat exchanger network considering pressure drop and layout of equipment exchanging heat," Energy, Elsevier, vol. 101(C), pages 484-495.
    17. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Aldawi, Fayez & Moria, Hazim & Anqi, Ali E. & Jarad, Fahd, 2022. "Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers," Energy, Elsevier, vol. 239(PC).
    18. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
    19. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:264-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.