IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221025196.html
   My bibliography  Save this article

Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers

Author

Listed:
  • Dizaji, Hamed Sadighi
  • Pourhedayat, Samira
  • Aldawi, Fayez
  • Moria, Hazim
  • Anqi, Ali E.
  • Jarad, Fahd

Abstract

Numerous passive heat transfer enhancement techniques (including various types of turbulators) have been proposed before for heat exchangers by many researchers. Their thermal/frictional behaviors have been reported in-detail in term of Nu number, friction factor and so on. However, their economic characteristic has been always immature which is because of lack of an explicit economic criterion (with clear economic unit i.e. dollar per unit of time etc.) applicable for any passive technique through any type of heat exchanger. Hence, this research aims to propose an explicit economic criteria (with a final clear formula) to evaluate the production cost rate of heated/cooled fluid through any type of heat exchanger (with or without passive technique) taking into account all effective parameters (such as capital cost, pumping power, exergy related costs, electricity price of the region, thermal and fluid flow condition through the heat exchanger, ambient condition and so on) and without dependency of other equipment that may work in-line with heat exchanger. The model is developed based on the general standard Specific Exergy Costing theory. The proposed model is a strong economic criterion tool, optimization tool and also comparison tool between different passive heat transfer enhancement methods. Case study as an example application of the model is provided at the last part of the paper.

Suggested Citation

  • Dizaji, Hamed Sadighi & Pourhedayat, Samira & Aldawi, Fayez & Moria, Hazim & Anqi, Ali E. & Jarad, Fahd, 2022. "Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025196
    DOI: 10.1016/j.energy.2021.122271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Rao, R. Venkata & Saroj, Ankit, 2017. "Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm," Energy, Elsevier, vol. 128(C), pages 785-800.
    3. González-Gómez, P.A. & Petrakopoulou, F. & Briongos, J.V. & Santana, D., 2017. "Cost-based design optimization of the heat exchangers in a parabolic trough power plant," Energy, Elsevier, vol. 123(C), pages 314-325.
    4. Daniali, Omid Ali & Toghraie, Davood & Eftekhari, S. Ali, 2020. "Thermo-hydraulic and economic optimization of Iranol refinery oil heat exchanger with Copper oxide nanoparticles using MOMBO," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    6. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    7. Akpomiemie, Mary O. & Smith, Robin, 2018. "Cost-effective strategy for heat exchanger network retrofit," Energy, Elsevier, vol. 146(C), pages 82-97.
    8. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Minimisation of a heat exchanger networks' cost over its lifetime," Energy, Elsevier, vol. 45(1), pages 264-276.
    9. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Han & Rong Feng & Taiyang Xiao & Machao Guo & Jiahui Wu & Hong Cui, 2023. "Simulation Research on the Optimization of Domestic Heat Pump Water Heater Condensers," Energies, MDPI, vol. 16(21), pages 1-14, November.
    2. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Moria, Hazim & Alqahtani, Sultan & Alshehery, Sultan & Anqi, Ali E., 2024. "Performance boost of a commercial air-to-air plate heat recovery unit by mesh-net insert; thermal-frictional, economic, and effectiveness-NTU analysis," Energy, Elsevier, vol. 290(C).
    3. Keçebaş, Ali & Georgiev, Aleksandar G. & Karaca-Dolgun, Gülşah, 2024. "Exergy and exergoenvironmental analyses for characterizing heat transfer and pressure drop of any heat exchanger," Energy, Elsevier, vol. 290(C).
    4. Liu, Hanyu & Xi, Kun & Xie, Zhihui & Lu, Zhuoqun & Chen, Huawei & Zhang, Jian & Ge, Yanlin, 2023. "Constructal design of double-layer asymmetric flower baffles," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    3. Yonathan Heredia-Aricapa & Juan M. Belman-Flores & Jorge A. Soria-Alcaraz & Vicente Pérez-García & Francisco Elizalde-Blancas & Jorge A. Alfaro-Ayala & José Ramírez-Minguela, 2022. "Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A," Energies, MDPI, vol. 15(17), pages 1-14, August.
    4. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    5. Juan José Cartelle Barros & Manuel Lara Coira & María Pilar de la Cruz López & Alfredo del Caño Gochi & Isabel Soares, 2020. "Optimisation Techniques for Managing the Project Sustainability Objective: Application to a Shell and Tube Heat Exchanger," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    6. Gómez-Hernández, J. & González-Gómez, P.A. & Briongos, J.V. & Santana, D., 2018. "Influence of the steam generator on the exergetic and exergoeconomic analysis of solar tower plants," Energy, Elsevier, vol. 145(C), pages 313-328.
    7. Li, Pengcheng & Ye, Jing & Li, Jing & Wang, Yandong & Jiang, Xiaobin & Qian, Tongle & Pei, Gang & Liu, Xunfen, 2023. "Thermodynamic and techno-economic analysis of a direct thermal oil vaporization solar power system," Energy, Elsevier, vol. 282(C).
    8. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    9. De Bellis, Fabio & Catalano, Luciano A., 2012. "CFD optimization of an immersed particle heat exchanger," Applied Energy, Elsevier, vol. 97(C), pages 841-848.
    10. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    11. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    12. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    13. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    14. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    15. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    16. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    17. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    18. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    19. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    20. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.