IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i8p5338-5342.html
   My bibliography  Save this article

Thermo-oxidative characterization and kinetics of tar sands

Author

Listed:
  • Versan KOK, Mustafa

Abstract

In this research, non-isothermal kinetics and thermal analysis of Gerçüş tar sand sample is studied by DSC (differential scanning calorimeter) and TG/DTG (thermogravimetry). Experiments were performed using three different mesh size (20–35, 35–50 and >50) of sample. Differential scanning calorimeter (DSC) curves revealed three reaction regions in the temperature range of 20–600 °C. On the other hand, thermogravimetry (TG/DTG) curves of tar sand samples at different particle sizes demonstrated three stages of weight loss. Two different kinetic models (Coats & Redfern and Arrhenius) were used to determine the kinetic parameters of the samples and it was observed that the average activation energy values were between 17.5 and 26.6 kJ/mol, for reaction region-II and 126.2–160.1 kJ/mol for reaction region-III, respectively. In order to see the contribution of each region to the overall reactivity of the tar sand sample, weighted mean apparent activation energy of the samples are also determined.

Suggested Citation

  • Versan KOK, Mustafa, 2011. "Thermo-oxidative characterization and kinetics of tar sands," Energy, Elsevier, vol. 36(8), pages 5338-5342.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:5338-5342
    DOI: 10.1016/j.energy.2011.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Folgueras, M.B. & Díaz, R.M., 2010. "Influence of FeCl3 and lime added to sludge on sludge–coal pyrolysis," Energy, Elsevier, vol. 35(12), pages 5250-5259.
    2. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    3. Penner, S.S. & Benson, S.W. & Camp, F.W. & Clardy, J. & Deutch, J. & Kelley, A.E. & Lewis, A.E. & Mayer, F.X. & Oblad, A.G. & Sieg, R.P. & Skinner, W.C. & Whitehurst, D.D., 1982. "Assessment of research needs for oil recovery from heavy-oil sources and tar sands," Energy, Elsevier, vol. 7(7), pages 567-602.
    4. Murugan, Pulikesi & Mahinpey, Nader & Mani, Thilakavathi & Asghari, Koorosh, 2010. "Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil," Energy, Elsevier, vol. 35(5), pages 2317-2322.
    5. Al-Otoom, Awni & Allawzi, Mamdouh & Al-Omari, Naser & Al-Hsienat, Emad, 2010. "Bitumen recovery from Jordanian oil sand by froth flotation using petroleum cycles oil cuts," Energy, Elsevier, vol. 35(10), pages 4217-4225.
    6. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    7. Jaber, J.O. & Probert, S.D. & Williams, P.T., 1999. "Evaluation of oil yield from Jordanian oil shales," Energy, Elsevier, vol. 24(9), pages 761-781.
    8. Al-Otoom, Awni & Allawzi, Mamdouh & Al-Harahsheh, Adnan M. & Al-Harahsheh, Mohammad & Al-Ghbari, Randa & Al-Ghazo, Raeda & Al-Saifi, Husam, 2009. "A parametric study on the factors affecting the froth floatation of Jordanian tar sand utilizing a fluidized bed floatator," Energy, Elsevier, vol. 34(9), pages 1310-1314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    2. Khansari, Zeinab & Kapadia, Punitkumar & Mahinpey, Nader & Gates, Ian D., 2014. "A new reaction model for low temperature oxidation of heavy oil: Experiments and numerical modeling," Energy, Elsevier, vol. 64(C), pages 419-428.
    3. Irfan, Muhammad Faisal & Arami-Niya, Arash & Chakrabarti, Mohammed Harun & Wan Daud, Wan Mohd. Ashri & Usman, Muhammad Rashid, 2012. "Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres," Energy, Elsevier, vol. 37(1), pages 665-672.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
    2. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    3. Betancourt-Torcat, Alberto & Elkamel, Ali & Ricardez-Sandoval, Luis, 2012. "A modeling study of the effect of carbon dioxide mitigation strategies, natural gas prices and steam consumption on the Canadian Oil Sands operations," Energy, Elsevier, vol. 45(1), pages 1018-1033.
    4. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    5. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    6. Mu, Mao & Han, Xiangxin & Jiang, Xiumin, 2018. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 3. Exergy analysis," Energy, Elsevier, vol. 151(C), pages 930-939.
    7. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    8. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    9. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    10. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    11. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    12. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    13. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    14. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    15. Alexis Sagastume & Jorge M. Mendoza & Juan J. Cabello & Jes s D. Rhenals, 2021. "The Available Waste-to-energy Potential from Agricultural Wastes in the Department of C rdoba, Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 44-50.
    16. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    17. Al-Otoom, Awni & Allawzi, Mamdouh & Al-Omari, Naser & Al-Hsienat, Emad, 2010. "Bitumen recovery from Jordanian oil sand by froth flotation using petroleum cycles oil cuts," Energy, Elsevier, vol. 35(10), pages 4217-4225.
    18. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    19. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    20. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:8:p:5338-5342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.