IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i8p4671-4683.html
   My bibliography  Save this article

A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals

Author

Listed:
  • Vlysidis, Anestis
  • Binns, Michael
  • Webb, Colin
  • Theodoropoulos, Constantinos

Abstract

In this work we explore the concept of integrated biorefineries, and we examine alternative schemes for the co-production of biofuels (biodiesel) and chemicals (succinic acid). Four different biorefinery schemes considering the different uses of crude glycerine from the biodiesel process are simulated and compared: (i) the disposal of crude glycerine as a waste, (ii) the purification (through distillation) of crude glycerine to 80%, (iii) the purification of glycerine to 95%. and (iv) the production of succinic acid from glycerine through fermentation. For the latter, we consider the bioprocess that converts the glycerol to succinate, and a downstream separation process that purifies and crystallises our product to the final succinic acid crystals. To apply complex kinetics for the fermentation we have linked Aspen Plus (2006.5) with Matlab (R2007b), where we have used the experimentally-based unstructured model from Vlysidis et al., 2009 and 2010. We first determine the operating parameters of the fermentor that have a significant effect on the economics of this scenario, i.e. the cycle time of the batch fermentation and the water flowrate entering the bioreactor. Subsequently, we perform single- and multi-objective optimisation to maximise the profit and/or to minimise the environmental impact of the overall process. We then analyse and compare the economics of the four different biorefinery schemes by using well-known profitability and/or emission criteria. Furthermore, we carry out sensitivity analysis that takes into consideration price variations for the most important materials and we extract firm conclusions about the profitability of each scenario. It is found that succinic acid co-production can enhance the profit of the overall biorefinery by 60% for a 20 years plant lifetime. These results indicate the importance of glycerol when it is utilised as a key renewable building block for the production of commodity chemicals.

Suggested Citation

  • Vlysidis, Anestis & Binns, Michael & Webb, Colin & Theodoropoulos, Constantinos, 2011. "A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals," Energy, Elsevier, vol. 36(8), pages 4671-4683.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:4671-4683
    DOI: 10.1016/j.energy.2011.04.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.04.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Zhiyuan & Tan, Piqiang & Yan, Xiaoyu & Lou, Diming, 2008. "Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China," Energy, Elsevier, vol. 33(11), pages 1654-1658.
    2. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock," Energy, Elsevier, vol. 35(6), pages 2493-2504.
    3. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    4. Iliopoulos, Constantine & Rozakis, Stelios, 2010. "Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios," Energy Policy, Elsevier, vol. 38(2), pages 1067-1078, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopes, Daniela de Carvalho & Steidle Neto, Antonio José & Mendes, Adriano Aguiar & Pereira, Débora Tamires Vítor, 2013. "Economic feasibility of biodiesel production from Macauba in Brazil," Energy Economics, Elsevier, vol. 40(C), pages 819-824.
    2. Ko, Chun-Han & Yeh, Kai-Wun & Wang, Ya-Nang & Wu, Chien-Hou & Chang, Fang-Chih & Cheng, Ming-Hsun & Liou, Chia-Shin, 2012. "Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing," Energy, Elsevier, vol. 48(1), pages 375-379.
    3. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    4. Gutiérrez Ortiz, F.J. & Ollero, P. & Serrera, A. & Galera, S., 2012. "Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water," Energy, Elsevier, vol. 42(1), pages 192-203.
    5. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    6. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    7. Granjo, José F.O. & Duarte, Belmiro P.M. & Oliveira, Nuno M.C., 2017. "Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment," Energy, Elsevier, vol. 129(C), pages 273-291.
    8. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    9. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Zaroni, Hebert & Maciel, Letícia B. & Carvalho, Diego B. & Pamplona, Edson de O., 2019. "Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system," Energy, Elsevier, vol. 172(C), pages 498-508.
    11. Yashni Gopalakrishnan & Adel Al-Gheethi & Marlinda Abdul Malek & Mawar Marisa Azlan & Mohammed Al-Sahari & Radin Maya Saphira Radin Mohamed & Sadeq Alkhadher & Efaq Noman, 2020. "Removal of Basic Brown 16 from Aqueous Solution Using Durian Shell Adsorbent, Optimisation and Techno-Economic Analysis," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    12. Joanna Czerwik-Marcinkowska & Katarzyna Gałczyńska & Jerzy Oszczudłowski & Andrzej Massalski & Jacek Semaniak & Michał Arabski, 2020. "Fatty Acid Methyl Esters of the Aerophytic Cave Alga Coccomyxa subglobosa as a Source for Biodiesel Production," Energies, MDPI, vol. 13(24), pages 1-11, December.
    13. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
    15. Sarma, Saurabh Jyoti & Das, Ratul Kumar & Brar, Satinder Kaur & Le Bihan, Yann & Buelna, Gerardo & Verma, Mausam & Soccol, Carlos Ricardo, 2014. "Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste," Energy, Elsevier, vol. 78(C), pages 16-22.
    16. Aniya, Vineet & De, Debiparna & Singh, Ashish & Satyavathi, B., 2018. "Design and operation of extractive distillation systems using different class of entrainers for the production of fuel grade tert-butyl Alcohol:A techno-economic assessment," Energy, Elsevier, vol. 144(C), pages 1013-1025.
    17. Lim, Steven & Lee, Keat Teong, 2014. "Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction," Energy, Elsevier, vol. 68(C), pages 71-79.
    18. Zhu, Qing-li & Shao, Rong & Dong, Rui & Yun, Zhi, 2014. "An integrated approach for obtaining biodiesel, sterols, gossypol, and raffinose from cottonseed on a biorefinery concept," Energy, Elsevier, vol. 70(C), pages 149-158.
    19. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    20. He, Chang & Feng, Xiao, 2012. "Evaluation indicators for energy-chemical systems with multi-feed and multi-product," Energy, Elsevier, vol. 43(1), pages 344-354.
    21. Beatrice, Carlo & Di Blasio, Gabriele & Guido, Chiara & Cannilla, Catia & Bonura, Giuseppe & Frusteri, Francesco, 2014. "Mixture of glycerol ethers as diesel bio-derivable oxy-fuel: Impact on combustion and emissions of an automotive engine combustion system," Applied Energy, Elsevier, vol. 132(C), pages 236-247.
    22. Ana Susmozas & Diego Iribarren & Javier Dufour, 2015. "Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe," Resources, MDPI, vol. 4(2), pages 1-14, June.
    23. Sangeeta, & Moka, Sudheshna & Pande, Maneesha & Rani, Monika & Gakhar, Ruchi & Sharma, Madhur & Rani, Jyoti & Bhaskarwar, Ashok N., 2014. "Alternative fuels: An overview of current trends and scope for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 697-712.
    24. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    25. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    2. Gogoi, T.K. & Baruah, D.C., 2010. "A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends," Energy, Elsevier, vol. 35(3), pages 1317-1323.
    3. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    4. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(5), pages 3328-3334.
    5. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    6. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    7. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    8. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    9. Makasson R. Cland & Offong O. Aniekan & Muhammad A. Tahir & Ogbaka T. David, 2020. "Production of Biodiesel from Groundnut Crude Oil," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 133-136, August.
    10. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    11. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    13. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    14. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    15. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    17. Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
    18. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    19. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    20. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:8:p:4671-4683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.