IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i7p3571-3592d27322.html
   My bibliography  Save this article

Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

Author

Listed:
  • Tobias Ott

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland)

  • Christopher Onder

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland)

  • Lino Guzzella

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland)

Abstract

In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC). The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP), we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

Suggested Citation

  • Tobias Ott & Christopher Onder & Lino Guzzella, 2013. "Hybrid-Electric Vehicle with Natural Gas-Diesel Engine," Energies, MDPI, vol. 6(7), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3571-3592:d:27322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/7/3571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/7/3571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Selim, Mohamed Y.E, 2001. "Pressure–time characteristics in diesel engine fueled with natural gas," Renewable Energy, Elsevier, vol. 22(4), pages 473-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioan Aschilean & Mihai Varlam & Mihai Culcer & Mariana Iliescu & Mircea Raceanu & Adrian Enache & Maria Simona Raboaca & Gabriel Rasoi & Constantin Filote, 2018. "Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle," Energies, MDPI, vol. 11(5), pages 1-12, May.
    2. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    3. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    4. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    5. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    6. Richard Hutter & Johannes Ritzmann & Philipp Elbert & Christopher Onder, 2017. "Low-Load Limit in a Diesel-Ignited Gas Engine," Energies, MDPI, vol. 10(10), pages 1-27, September.
    7. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Zhi Chao & Mohd Mishani, Mohd Bakar & Chong, Wen Tong & Soon, Roon Sheng & Ong, Hwai Chyuan & Ismail, Zubaidah, 2017. "Identification of optimum Calophyllum inophyllum bio-fuel blend in diesel engine using advanced vibration analysis technique," Renewable Energy, Elsevier, vol. 109(C), pages 295-304.
    2. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    3. Andrey Kozlov & Vadim Grinev & Alexey Terenchenko & Gennady Kornilov, 2019. "An Investigation of the Effect of Fuel Supply Parameters on Combustion Process of the Heavy-Duty Dual-Fuel Diesel Ignited Gas Engine," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Park, Jungsoo & Lee, Kyo Seung & Kim, Min Su & Jung, Dohoy, 2014. "Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto optimization," Energy, Elsevier, vol. 70(C), pages 278-287.
    6. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    7. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    8. Poompipatpong, Chedthawut & Cheenkachorn, Kraipat, 2011. "A modified diesel engine for natural gas operation: Performance and emission tests," Energy, Elsevier, vol. 36(12), pages 6862-6866.
    9. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2020. "Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 149(C), pages 951-961.
    10. Jatoth, Ramachander & Gugulothu, Santhosh Kumar & Ravi kiran Sastry, G., 2021. "Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3571-3592:d:27322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.