IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p1024-1032.html
   My bibliography  Save this article

Evaluation of the effects of the operation strategy of a steam power plant on the residual life of its devices

Author

Listed:
  • Mirandola, A.
  • Stoppato, A.
  • Lo Casto, E.

Abstract

In the deregulated market scenario wider power generation flexibility with respect to the past is needed; on the other hand, frequent changes of the operating conditions may reduce the life of the most critical components, such as steam heaters or turbine blades. Fatigue failures produced by cyclic thermal and/or mechanical stresses will be considered in this work. The estimation is based on creep and fatigue failure models and is applied at the component level. In particular, in this paper evaluation of the impact of thermo-mechanical fatigue in the superheater pipes of an actual coal power plant will be carried out to estimate its residual life. Then, this evaluation at the device level will be translated into plant level assessment.

Suggested Citation

  • Mirandola, A. & Stoppato, A. & Lo Casto, E., 2010. "Evaluation of the effects of the operation strategy of a steam power plant on the residual life of its devices," Energy, Elsevier, vol. 35(2), pages 1024-1032.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:1024-1032
    DOI: 10.1016/j.energy.2009.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alobaid, Falah & Postler, Ralf & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2008. "Modeling and investigation start-up procedures of a combined cycle power plant," Applied Energy, Elsevier, vol. 85(12), pages 1173-1189, December.
    2. Carraretto, Cristian, 2006. "Power plant operation and management in a deregulated market," Energy, Elsevier, vol. 31(6), pages 1000-1016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hengliang & Xie, Danmei & Yu, Yanzhi & Yu, Liangying, 2016. "Online optimal control schemes of inlet steam temperature during startup of steam turbines considering low cycle fatigue," Energy, Elsevier, vol. 117(P1), pages 105-115.
    2. Stoppato, A. & Mirandola, A. & Meneghetti, G. & Lo Casto, E., 2012. "On the operation strategy of steam power plants working at variable load: Technical and economic issues," Energy, Elsevier, vol. 37(1), pages 228-236.
    3. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.
    4. Rusin, Andrzej & Bieniek, Michał & Lipka, Marian, 2016. "Assessment of the rise in the turbine operation risk due to increased cyclicity of the power unit operation," Energy, Elsevier, vol. 96(C), pages 394-403.
    5. Raslavičius, Laurencas & Bazaras, Žilvinas, 2010. "Ecological assessment and economic feasibility to utilize first generation biofuels in cogeneration output cycle – The case of Lithuania," Energy, Elsevier, vol. 35(9), pages 3666-3673.
    6. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    7. Erik Rosado-Tamariz & Miguel A. Zuniga-Garcia & Alfonso Campos-Amezcua & Rafael Batres, 2020. "A Framework for the Synthesis of Optimum Operating Profiles Based on Dynamic Simulation and a Micro Genetic Algorithm," Energies, MDPI, vol. 13(3), pages 1-23, February.
    8. Jesse G. Wales & Alexander J. Zolan & William T. Hamilton & Alexandra M. Newman & Michael J. Wagner, 2023. "Combining simulation and optimization to derive operating policies for a concentrating solar power plant," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 119-150, March.
    9. González-Gómez, P.A. & Gómez-Hernández, J. & Briongos, J.V. & Santana, D., 2018. "Fatigue analysis of the steam generator of a parabolic trough solar power plant," Energy, Elsevier, vol. 155(C), pages 565-577.
    10. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.
    11. Łukowicz, Henryk & Rusin, Andrzej, 2018. "The impact of the control method of cyclic operation on the power unit efficiency and life," Energy, Elsevier, vol. 150(C), pages 565-574.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    2. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    3. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    4. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
    5. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    6. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    7. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    8. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    9. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.
    10. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    11. Sun, Zhixin & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2012. "Dynamic optimal design of a power generation system utilizing industrial waste heat considering parameter fluctuations of exhaust gas," Energy, Elsevier, vol. 44(1), pages 1035-1043.
    12. Alobaid, Falah & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2009. "Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures," Applied Energy, Elsevier, vol. 86(7-8), pages 1274-1282, July.
    13. Pierobon, Leonardo & Casati, Emiliano & Casella, Francesco & Haglind, Fredrik & Colonna, Piero, 2014. "Design methodology for flexible energy conversion systems accounting for dynamic performance," Energy, Elsevier, vol. 68(C), pages 667-679.
    14. Wolfgang, Ove & Haugstad, Arne & Mo, Birger & Gjelsvik, Anders & Wangensteen, Ivar & Doorman, Gerard, 2009. "Hydro reservoir handling in Norway before and after deregulation," Energy, Elsevier, vol. 34(10), pages 1642-1651.
    15. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    16. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    17. Jihun So & Hyun Shin & Thai Nguyen Tran & Yeong-Jun Choi, 2022. "Decentralized Cooperative Active Power Control for Small-Scale Grids with High Renewable Penetration through VSC-HVDC," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    18. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology," Energy, Elsevier, vol. 35(7), pages 2999-3007.
    19. Hao Zhang & Xiangjie Liu & Xiaobing Kong & Kwang Y. Lee, 2019. "Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System," Energies, MDPI, vol. 12(21), pages 1-14, October.
    20. Alobaid, Falah & Pfeiffer, Stefan & Epple, Bernd & Seon, Chil-Yeong & Kim, Hyun-Gee, 2012. "Fast start-up analyses for Benson heat recovery steam generator," Energy, Elsevier, vol. 46(1), pages 295-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:1024-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.