IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v96y2016icp394-403.html
   My bibliography  Save this article

Assessment of the rise in the turbine operation risk due to increased cyclicity of the power unit operation

Author

Listed:
  • Rusin, Andrzej
  • Bieniek, Michał
  • Lipka, Marian

Abstract

The energy market liberalization and the increasing share of renewable energy sources, considered for environmental reasons to be a priority in electricity generation, necessitate a change in the operation strategy of coal-fired power units. Units that have so far operated as basic ones will more and more often have to function as regulation units. This involves a rise in their operation cyclicity and frequent changes in the power output. This paper presents an analysis of the impact of these new methods of operation on changes in the technical risk. A detailed analysis is made of the turbine rotors, whose damage may lead to severe consequences. It is proved that a rise in the operation cyclicity may raise the level of risk related to further operation. The risk growth effect is especially important for power units which have already been operated for a long time and whose components show a relatively large life consumption.

Suggested Citation

  • Rusin, Andrzej & Bieniek, Michał & Lipka, Marian, 2016. "Assessment of the rise in the turbine operation risk due to increased cyclicity of the power unit operation," Energy, Elsevier, vol. 96(C), pages 394-403.
  • Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:394-403
    DOI: 10.1016/j.energy.2015.12.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    2. Stoppato, A. & Mirandola, A. & Meneghetti, G. & Lo Casto, E., 2012. "On the operation strategy of steam power plants working at variable load: Technical and economic issues," Energy, Elsevier, vol. 37(1), pages 228-236.
    3. Rusin, Andrzej M., 2007. "Technical risk involved in long-term operation of steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1242-1249.
    4. Mirandola, A. & Stoppato, A. & Lo Casto, E., 2010. "Evaluation of the effects of the operation strategy of a steam power plant on the residual life of its devices," Energy, Elsevier, vol. 35(2), pages 1024-1032.
    5. Keatley, P. & Shibli, A. & Hewitt, N.J., 2013. "Estimating power plant start costs in cyclic operation," Applied Energy, Elsevier, vol. 111(C), pages 550-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taler, Jan & Dzierwa, Piotr & Jaremkiewicz, Magdalena & Taler, Dawid & Kaczmarski, Karol & Trojan, Marcin & Sobota, Tomasz, 2019. "Thermal stress monitoring in thick walled pressure components of steam boilers," Energy, Elsevier, vol. 175(C), pages 645-666.
    2. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    3. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    4. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    2. Jesse G. Wales & Alexander J. Zolan & William T. Hamilton & Alexandra M. Newman & Michael J. Wagner, 2023. "Combining simulation and optimization to derive operating policies for a concentrating solar power plant," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 119-150, March.
    3. Łukowicz, Henryk & Rusin, Andrzej, 2018. "The impact of the control method of cyclic operation on the power unit efficiency and life," Energy, Elsevier, vol. 150(C), pages 565-574.
    4. Zhang, Hengliang & Xie, Danmei & Yu, Yanzhi & Yu, Liangying, 2016. "Online optimal control schemes of inlet steam temperature during startup of steam turbines considering low cycle fatigue," Energy, Elsevier, vol. 117(P1), pages 105-115.
    5. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    6. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    7. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.
    8. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.
    9. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    10. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    11. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    12. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    13. Martyna Tomala & Andrzej Rusin, 2022. "Risk-Based Operation and Maintenance Planning of Steam Turbine with the Long In-Service Time," Energies, MDPI, vol. 15(14), pages 1-17, July.
    14. Lin, Zhenhua & Li, Wenyuan, 2013. "Restrictions of point estimate methods and remedy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 106-111.
    15. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    16. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    17. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    18. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    19. Ghabraei, Soheil & Moradi, Hamed & Vossoughi, Gholamreza, 2018. "Design & application of adaptive variable structure &H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties," Energy, Elsevier, vol. 142(C), pages 1040-1056.
    20. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:394-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.