IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025550.html
   My bibliography  Save this article

Kinetic characteristics of methane hydrate formation under the synergistic effect of electric field and Hexadecyl trimethyl ammonium Bromide

Author

Listed:
  • Li, Junhui
  • Shi, Lingli
  • He, Yong
  • Lu, Jingsheng
  • Long, Zhen
  • Liang, Deqing

Abstract

Exploring hydrate formation methods with high gas storage capacity and high formation rate will be of great significance to the large-scale application of hydrate storage and transportation technology. The synergistic promotion of electric field and surfactant is an effective solution. In this work, the effects of sinusoidal alternating electric field and surfactant Hexadecyl trimethyl ammonium Bromide (CTAB) on the kinetics of methane hydrate generation were investigated. Methane hydrate formation kinetics experiments were conducted at different CTAB concentrations (0, 200, 500, 800 ppm) and voltages (0, 100, 500, 1000, 1500, 2000V) under the condition of 7 MPa and 275.15 K. The results showed that the synergistic effect of electric field and CTAB could effectively shorten the induction time of methane hydrate formation, greatly increase the formation rate, and improve the mobility of the generated hydrate. The downside was a slight decrease in gas storage capacity. A series of microscopic tests demonstrated that the introduction of electric field and CTAB did not change the crystal type of methane hydrate. This study was expected to provide new insights for rapid preparation of hydrates.

Suggested Citation

  • Li, Junhui & Shi, Lingli & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Kinetic characteristics of methane hydrate formation under the synergistic effect of electric field and Hexadecyl trimethyl ammonium Bromide," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025550
    DOI: 10.1016/j.energy.2023.129161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Lingli & Ding, Jiaxiang & Liang, Deqing, 2019. "Enhanced CH4 storage in hydrates with the presence of sucrose stearate," Energy, Elsevier, vol. 180(C), pages 978-988.
    2. Dong, Xiucheng & Pi, Guanglin & Ma, Zhengwei & Dong, Cong, 2017. "The reform of the natural gas industry in the PR of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 582-593.
    3. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    4. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    5. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    6. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    2. Shi, Lingli & Li, Junhui & Chen, Yong & Lu, Jingsheng & He, Yong & Liang, Deqing, 2024. "Molecular dynamics simulation study of the cosine oscillation electric field's effect on methane hydrate growth," Energy, Elsevier, vol. 290(C).
    3. Shi, Lingli & Li, Junhui & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Memory effect test and analysis in methane hydrates reformation process," Energy, Elsevier, vol. 272(C).
    4. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    5. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    6. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    7. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    8. Roberto Cardinale, 2022. "State-Owned Enterprises’ Reforms and their Implications for the Resilience and Vulnerability of the Chinese Economy: Evidence from the Banking, Energy and Telecom Sectors," Networks and Spatial Economics, Springer, vol. 22(3), pages 489-514, September.
    9. Zhou, Zhongbing & Qin, Quande, 2020. "Epistemological dominance and ignorance of the comparative advantages of China's shale gas: Evidence from international scientific journals," Energy Policy, Elsevier, vol. 138(C).
    10. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    11. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    12. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    13. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    14. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1, November.
    15. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    16. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    17. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    18. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    19. Kuang, Yangmin & Zhang, Lunxiang & Zheng, Yanpeng, 2022. "Enhanced CO2 sequestration based on hydrate technology with pressure oscillation in porous medium using NMR," Energy, Elsevier, vol. 252(C).
    20. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.