IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005619.html
   My bibliography  Save this article

Strength and creep characteristics of methane hydrate-bearing clayey silts of the South China Sea

Author

Listed:
  • Wang, Lei
  • Shen, Shi
  • Wu, Zhaoran
  • Wu, Dejun
  • Li, Yanghui

Abstract

Natural gas hydrates are abundantly detected in the clayey-silty deposits of the South China Sea (SCS). The long-term hydrate extraction process may trigger creep deformation and failure of the clayey-silty reservoir. Hence, it is essential to evaluate the creep properties of the clayey-silty hydrate reservoir for safe production. Current research mainly focused on rapid failure, while neglecting time-dependent creep deformation of the clayey-silty hydrate reservoir. In this study, a number of triaxial shear and creep experiments were carried out on methane hydrate-bearing clayey silts (HBCSs) in the SCS in order to investigate their strength and creep deformation characteristics. The results indicated that: (1) the increase of effective stress enhances the shear strength and deformation, and the presence of hydrates enhances the shear strength while reducing the deformation; (2) the creep strain and strain rate increase as the creep stress ratio and effective stress rise; (3) the accelerated creep stage only occurs at higher effective stress in HBCSs and not in hydrate-free clayey silts (HFCSs), and the creep strain and strain rate of the HBCSs are lower than those of the HFCSs. The experimental data will contribute to the construction and verification of creep constitutive models for HBCSs in the SCS.

Suggested Citation

  • Wang, Lei & Shen, Shi & Wu, Zhaoran & Wu, Dejun & Li, Yanghui, 2024. "Strength and creep characteristics of methane hydrate-bearing clayey silts of the South China Sea," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005619
    DOI: 10.1016/j.energy.2024.130789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanghui Li & Peng Wu & Xiang Sun & Weiguo Liu & Yongchen Song & Jiafei Zhao, 2019. "Creep Behaviors of Methane Hydrate-Bearing Frozen Sediments," Energies, MDPI, vol. 12(2), pages 1-17, January.
    2. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    3. Kuniyuki Miyazaki & Norio Tenma & Tsutomu Yamaguchi, 2017. "Relationship between Creep Property and Loading-Rate Dependence of Strength of Artificial Methane-Hydrate-Bearing Toyoura Sand under Triaxial Compression," Energies, MDPI, vol. 10(10), pages 1-15, September.
    4. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    5. Wang, Haijun & Wu, Peng & Li, Yanghui & Liu, Weiguo & Pan, Xuelian & Li, Qingping & He, Yufa & Song, Yongchen, 2023. "Gas permeability variation during methane hydrate dissociation by depressurization in marine sediments," Energy, Elsevier, vol. 263(PB).
    6. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    7. Liu, Tao & Tang, Haoran & Wu, Peng & Wang, Haijun & Song, Yuanxin & Li, Yanghui, 2023. "Acoustic characteristics on clayey-silty sediments of the South China Sea during methane hydrate formation and dissociation," Energy, Elsevier, vol. 282(C).
    8. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    9. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    10. Chen, Bingbing & Liu, Zheyuan & Sun, Huiru & Zhao, Guojun & Sun, Xiang & Yang, Mingjun, 2021. "The synthetic effect of traditional-thermodynamic-factors (temperature, salinity, pressure) and fluid flow on natural gas hydrate recovery behaviors," Energy, Elsevier, vol. 233(C).
    11. Wu, Peng & Chen, Yukun & Shang, Anran & Ding, Jiping & Wei, Jiangong & Liu, Weiguo & Li, Yanghui, 2024. "Anisotropy analysis of two-phase flow permeability in the multi-stage shear process of hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    12. Li, Yanlong & Wu, Nengyou & Gao, Deli & Chen, Qiang & Liu, Changling & Yang, Daoyong & Jin, Yurong & Ning, Fulong & Tan, Mingjian & Hu, Gaowei, 2021. "Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production," Energy, Elsevier, vol. 219(C).
    13. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    2. Wu, Peng & Chen, Yukun & Shang, Anran & Ding, Jiping & Wei, Jiangong & Liu, Weiguo & Li, Yanghui, 2024. "Anisotropy analysis of two-phase flow permeability in the multi-stage shear process of hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    3. You, Zeshao & Li, Yanghui & Yang, Meixiao & Wu, Peng & Liu, Tao & Li, Jiayu & Hu, Wenkang & Song, Yongchen, 2024. "Investigation of particle-scale mechanical behavior of hydrate-bearing sands using DEM: Focus on hydrate habits," Energy, Elsevier, vol. 289(C).
    4. Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).
    5. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    6. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    7. You, Zeshao & Li, Yanghui & Liu, Tao & Qu, Yong & Hu, Wenkang & Song, Yongchen, 2024. "Stress-strain response and deformation behavior of hydrate-bearing sands under different grain sizes: A particle-scale study using DEM," Energy, Elsevier, vol. 290(C).
    8. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    9. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    10. Gong, Guangjun & Yang, Mingjun & Pang, Weixin & Zheng, Jia-nan & Song, Yongchen, 2024. "Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs," Energy, Elsevier, vol. 292(C).
    11. Chen, Zherui & Dai, Sining & Chen, Cong & Lyu, Huangwu & Zhang, Shuheng & Liu, Xuanji & Li, Yanghui, 2024. "Hydrate aggregation in oil-gas pipelines: Unraveling the dual role of asphalt and water," Energy, Elsevier, vol. 290(C).
    12. Liu, Zaixing & Ma, Shihui & Wu, Zhaoran & Liu, Zheyuan & Wang, Jiguang & Lang, Chen & Li, Yanghui, 2024. "Investigation of flow and viscosity characteristics of hydrate slurries within a visual-loop system," Energy, Elsevier, vol. 289(C).
    13. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    14. Deng, Fucheng & Wang, Yifei & Li, Xiaosen & Li, Gang & Wang, Yi & Huang, Bin, 2024. "A model-based study of the evolution of gravel layer permeability under the synergistic blockage effect of sand particle transport and secondary hydrate formation," Applied Energy, Elsevier, vol. 355(C).
    15. Zhang, Ningtao & Li, Shuxia & Chen, Litao & Guo, Yang & Liu, Lu, 2024. "Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments," Energy, Elsevier, vol. 290(C).
    16. Liu, Tao & Tang, Haoran & Wu, Peng & Wang, Haijun & Song, Yuanxin & Li, Yanghui, 2023. "Acoustic characteristics on clayey-silty sediments of the South China Sea during methane hydrate formation and dissociation," Energy, Elsevier, vol. 282(C).
    17. Gan Feng & Hongqiang Xie & Qingxiang Meng & Fei Wu & Gan Li, 2022. "Advanced Coal, Petroleum, and Natural Gas Exploration Technology," Energies, MDPI, vol. 15(23), pages 1-5, November.
    18. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    19. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    20. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.