IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics036054422403353x.html
   My bibliography  Save this article

Comprehensive performance assessment of photovoltaic/thermal system using MWCNT/water nanofluid and novel finned multi-block nano-enhanced phase change material-based thermal collector: Energy, exergy, economic, and environmental (4E) perspectives

Author

Listed:
  • Tyagi, Praveen Kumar
  • Kumar, Rajan

Abstract

An innovative multi-block finned nano-enhanced phase change material (NePCM)-based photovoltaic/thermal (PV/T) system with thermal regulations through deionized water (DIW) and nanofluid at 0.25, 0.5, and 0.75 wt% is designed, fabricated, and tested in this study. The main goals are to achieve consistent heat transfer distribution, mitigate temperature stratification within each thermal energy storage block, and prevent material shrinkage at the bottom. The energy and exergy performance of the proposed PV/T-NePCM is investigated using indices such as power output, efficiency, exergy destruction, entropy generation, and sustainability index. Furthermore, environmental metrics such as CO2 emission, carbon credit gained, and net CO2 mitigation, as well as economic performance parameters such as energy payback time and energy cost are analyzed. The proposed system uses nanofluid as the heat transfer fluid at 1.5 l/min and 0.75 wt% NePCM, resulting in 9.26 % and 2.93 % higher energy and exergy efficiency than the DIW-based system. The economic evaluation shows that the PV/T-NePCM system has a cost of energy of 5.24 INR/kWh (0.063 USD/kWh), while the conventional PV module costs 5.64 INR/kWh (0.069 USD/kWh) with an 8 % interest rate and a 20-year lifespan. For environmental sustainability, the nanofluid-cooled PV/T-NePCM system has 637.28 kWh of embodied energy.

Suggested Citation

  • Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Comprehensive performance assessment of photovoltaic/thermal system using MWCNT/water nanofluid and novel finned multi-block nano-enhanced phase change material-based thermal collector: Energy, exergy," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s036054422403353x
    DOI: 10.1016/j.energy.2024.133575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403353X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    2. Goel, Nipun & Taylor, Robert A. & Otanicar, Todd, 2020. "A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors," Renewable Energy, Elsevier, vol. 145(C), pages 903-913.
    3. Lu, Yawei & Fan, Rujia & Wang, Zhirong & Cao, Xingyan & Guo, Wenjie, 2024. "The influence of hydrogen concentration on the characteristic of explosion venting: Explosion pressure, venting flame and flow field microstructure," Energy, Elsevier, vol. 293(C).
    4. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    5. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    6. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    7. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    8. Hossain, M.S. & Pandey, A.K. & Selvaraj, Jeyraj & Rahim, Nasrudin Abd & Islam, M.M. & Tyagi, V.V., 2019. "Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 136(C), pages 1320-1336.
    9. Singh, Preeti & Khanna, Sourav & Becerra, Victor & Newar, Sanjeev & Sharma, Vashi & Mallick, Tapas K. & Hutchinson, David & Radulovic, Jovana & Khusainov, Rinat, 2020. "Power improvement of finned solar photovoltaic phase change material system," Energy, Elsevier, vol. 193(C).
    10. Bhat, Amir Yousuf & Qayoum, Adnan, 2023. "Synergistic impact of tube configuration and working fluid on photovoltaic-thermal system performance," Renewable Energy, Elsevier, vol. 207(C), pages 205-217.
    11. Fudholi, Ahmad & Razali, Nur Farhana Mohd & Yazdi, Mohammad H. & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Othman, Mohd Yusof & Sopian, Kamaruzzaman, 2019. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach," Energy, Elsevier, vol. 183(C), pages 305-314.
    12. Alkhalidi, Ammar & Salameh, Tareq & Al Makky, Ahmed, 2024. "Experimental investigation thermal and exergy efficiency of photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 222(C).
    13. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    14. Sheikholeslami, M. & Khalili, Z., 2024. "Solar photovoltaic-thermal system with novel design of tube containing eco-friendly nanofluid," Renewable Energy, Elsevier, vol. 222(C).
    15. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    16. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    17. Tiwari, Sumit & Tiwari, G.N., 2016. "Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer," Energy, Elsevier, vol. 114(C), pages 155-164.
    18. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    19. Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Thermodynamic modeling and performance optimization of nanofluid-based photovoltaic/thermal system using central composite design scheme of response surface methodology," Renewable Energy, Elsevier, vol. 225(C).
    20. Cristina Prieto & Adrian Blindu & Luisa F. Cabeza & Juan Valverde & Guillermo García, 2023. "Molten Salts Tanks Thermal Energy Storage: Aspects to Consider during Design," Energies, MDPI, vol. 17(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    2. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
    3. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Chougule, Sandesh S. & Srivastava, Abhishek & Bolegave, Gaurav G. & Gaikwad, Bhagyashree A. & Shirage, Parasharam M. & Markides, Christos N., 2024. "Next-generation solar technologies: Unlocking the potential of Ag-ZnO hybrid nanofluids for enhanced spectral-splitting photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 236(C).
    7. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    8. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    9. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    10. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    11. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.
    12. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    13. Dong, Shiqian & Long, He & Guan, Jingxuan & Jiang, Lina & Zhuang, Chaoqun & Gao, Yafeng & Di, Yanqiang, 2024. "Performance investigation of a hybrid PV/T collector with a novel trapezoidal fluid channel," Energy, Elsevier, vol. 288(C).
    14. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    15. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    16. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    17. Carmona, Mauricio & Palacio Bastos, Alberto & García, José Doria, 2021. "Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 172(C), pages 680-696.
    18. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    19. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s036054422403353x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.