IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221021794.html
   My bibliography  Save this article

Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China

Author

Listed:
  • Wang, Dengjia
  • Mo, Zhelong
  • Liu, Yanfeng
  • Ren, Yuchao
  • Fan, Jianhua

Abstract

The thermal performance of flat-plate solar collectors (FPSCs) depends not only on environmental and operational parameters but also on its dimensions. In this study, the thermal performance improvement mechanism of FPSCs is studied focusing on the impact of collector size. Numerical simulation models for both large-scale flat-plate solar collectors (LSFPSCs), and conventional FPSCs in parallel, are introduced. The relationship between thermal performance and collector dimensions is studied for the LSFPSCs. Furthermore, the effect of the environmental and operational parameters on the thermal performance of the two collector types is investigated. Moreover, the applicability of LSFPSCs in China is analyzed with respect to available operating times, useful energy, and heat loss. The results indicate that increasing the collector dimensions can improve the thermal performance of FPSCs effectively, and the LSFPSCs perform better than conventional FPSCs in parallel. Compared to the conventional FPSCs, the collector efficiency of the LSFPSCs is higher-especially for low solar irradiance, low ambient temperatures, and high mass-flow rates. In addition, the LSFPSCs excel in solar-energy rich areas, the available daily operating time in Lhasa is 9.6 h, which is the longest operating time among the studied cities, and the proportion of useful energy is about 55 %.

Suggested Citation

  • Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021794
    DOI: 10.1016/j.energy.2021.121931
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minn, M.A. & Ng, K.C. & Khong, W.H. & Melvin, T., 2002. "A distributed model for a tedlar-foil flat plate solar collector," Renewable Energy, Elsevier, vol. 27(4), pages 507-523.
    2. Deng, Jie & Xu, Yupeng & Yang, Xudong, 2015. "A dynamic thermal performance model for flat-plate solar collectors based on the thermal inertia correction of the steady-state test method," Renewable Energy, Elsevier, vol. 76(C), pages 679-686.
    3. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    4. Wang, Zhifeng, 2010. "Prospectives for China's solar thermal power technology development," Energy, Elsevier, vol. 35(11), pages 4417-4420.
    5. Ucar, Aynur & Inalli, Mustafa, 2008. "Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating," Renewable Energy, Elsevier, vol. 33(12), pages 2532-2539.
    6. Kundu, B., 2010. "Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient," Applied Energy, Elsevier, vol. 87(7), pages 2243-2255, July.
    7. Selmi, Mohamed & Al-Khawaja, Mohammed J. & Marafia, Abdulhamid, 2008. "Validation of CFD simulation for flat plate solar energy collector," Renewable Energy, Elsevier, vol. 33(3), pages 383-387.
    8. Kazeminejad, H., 2002. "Numerical analysis of two dimensional parallel flow flat-plate solar collector," Renewable Energy, Elsevier, vol. 26(2), pages 309-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    2. L, Chilambarasan & Thangarasu, Vinoth & Ramasamy, Prakash, 2024. "Solar flat plate collector's heat transfer enhancement using grooved tube configuration with alumina nanofluids: Prediction of outcomes through artificial neural network modeling," Energy, Elsevier, vol. 289(C).
    3. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    4. Miroslav Rimar & Marcel Fedak & Andrii Kulikov & Olha Kulikova & Martin Lopusniak, 2022. "Analysis and CFD Modeling of Thermal Collectors with a Tracker System," Energies, MDPI, vol. 15(18), pages 1-28, September.
    5. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).
    6. Jianhao Sheng & Dianwei Qi & Hongchao Yan & Wanjiang Wang & Tao Wang, 2022. "Experimental Study on Low Carbonization of Green Building Based on New Membrane Structure Solar Sustainable Heat Collection," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    7. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Li & He, Bao-jie & Ye, Miao, 2014. "The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings," Technology in Society, Elsevier, vol. 38(C), pages 111-118.
    2. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    3. Julien Chevallier, 2013. "At the crossroads: can China grow in a low-carbon way?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 31, pages 666-681, Edward Elgar Publishing.
    4. Jilani, G. & Thomas, Ciby, 2015. "Thermal performance characteristics of an absorber plate fin having temperature dependent thermal conductivity and overall loss coefficient," Energy, Elsevier, vol. 86(C), pages 1-8.
    5. Hu, Tianxiang & Kwan, Trevor Hocksun & Pei, Gang, 2022. "An all-day cooling system that combines solar absorption chiller and radiative cooling," Renewable Energy, Elsevier, vol. 186(C), pages 831-844.
    6. Elminshawy, Nabil A.S. & Osama, Amr & Saif, Amany M. & Tina, Giuseppe Marco, 2022. "Thermo-electrical performance assessment of a partially submerged floating photovoltaic system," Energy, Elsevier, vol. 246(C).
    7. Ding Ding & Wenjing He & Chunlu Liu, 2021. "Mathematical Modeling and Optimization of Vanadium-Titanium Black Ceramic Solar Collectors," Energies, MDPI, vol. 14(3), pages 1-20, January.
    8. Subiantoro, Alison & Ooi, Kim Tiow, 2013. "Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing," Applied Energy, Elsevier, vol. 104(C), pages 392-399.
    9. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Zheng, Nan, 2015. "Trends in patents for solar thermal utilization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 852-862.
    10. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    11. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    12. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    13. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    14. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    15. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    16. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    17. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    18. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    19. Basalike, Pie & Peng, Wang & Zhang, Jili, 2022. "Numerical study on the performance of photovoltaic thermal unit condenser with water/nanofluids as fluids medium," Renewable Energy, Elsevier, vol. 197(C), pages 606-616.
    20. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.