IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032912.html
   My bibliography  Save this article

A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement

Author

Listed:
  • Wang, Yaqi
  • Zhao, Xiaomeng
  • Li, Zheng
  • Zhu, Wenbo
  • Gui, Renzhou

Abstract

Reliable multistep ahead wind speed forecasting (MAWSF) is critical for the energy management of wind farms and the long-term maintenance of wind power systems. However, relying on inherent meteorological features such as temperature and atmospheric pressure often fails to meet the deep learning model’s feature requirements for accurate wind speed forecasting (WSF). This paper introduces a hybrid multistep forecasting model that constructs a univariate wind speed feature enhancement framework, combining random forest (RF) and Transformer models for WSF. Initially, the hybrid enhancement framework decomposes the univariate wind speed data and extracts time-series features, effectively mining the latent feature information. Subsequently, the RF feature selector filters out significant features contributing to WSF and eliminates redundant features to provide stable features. Finally, the Transformer model is utilized for both short-term and long-term MAWSF. This study conducted MAWSF on data with sampling intervals of 20 min, 30 min and 1 h. The results indicate that, compared to existing state-of-the-art models, the hybrid model in MAWSF tasks reduces the dependency of models on inherent meteorological features, achieving more accurate forecasting and faster computation speeds. Ultimately, the proposed model can provide reliable technical support for energy management and maintenance guidance in real-world wind farms.

Suggested Citation

  • Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032912
    DOI: 10.1016/j.energy.2024.133515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.