IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v619y2023i7970d10.1038_s41586-023-06185-3.html
   My bibliography  Save this article

Accurate medium-range global weather forecasting with 3D neural networks

Author

Listed:
  • Kaifeng Bi

    (Huawei Cloud)

  • Lingxi Xie

    (Huawei Cloud)

  • Hengheng Zhang

    (Huawei Cloud)

  • Xin Chen

    (Huawei Cloud)

  • Xiaotao Gu

    (Huawei Cloud)

  • Qi Tian

    (Huawei Cloud)

Abstract

Weather forecasting is important for science and society. At present, the most accurate forecast system is the numerical weather prediction (NWP) method, which represents atmospheric states as discretized grids and numerically solves partial differential equations that describe the transition between those states1. However, this procedure is computationally expensive. Recently, artificial-intelligence-based methods2 have shown potential in accelerating weather forecasting by orders of magnitude, but the forecast accuracy is still significantly lower than that of NWP methods. Here we introduce an artificial-intelligence-based method for accurate, medium-range global weather forecasting. We show that three-dimensional deep networks equipped with Earth-specific priors are effective at dealing with complex patterns in weather data, and that a hierarchical temporal aggregation strategy reduces accumulation errors in medium-range forecasting. Trained on 39 years of global data, our program, Pangu-Weather, obtains stronger deterministic forecast results on reanalysis data in all tested variables when compared with the world’s best NWP system, the operational integrated forecasting system of the European Centre for Medium-Range Weather Forecasts (ECMWF)3. Our method also works well with extreme weather forecasts and ensemble forecasts. When initialized with reanalysis data, the accuracy of tracking tropical cyclones is also higher than that of ECMWF-HRES.

Suggested Citation

  • Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
  • Handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06185-3
    DOI: 10.1038/s41586-023-06185-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06185-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06185-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    3. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    4. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Florian Achermann & Thomas Stastny & Bogdan Danciu & Andrey Kolobov & Jen Jen Chung & Roland Siegwart & Nicholas Lawrance, 2024. "WindSeer: real-time volumetric wind prediction over complex terrain aboard a small uncrewed aerial vehicle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    7. Mattia Cavaiola & Federico Cassola & Davide Sacchetti & Francesco Ferrari & Andrea Mazzino, 2024. "Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Hang Gao & Chun Shen & Xuesong Wang & Pak-Wai Chan & Kai-Kwong Hon & Jianbing Li, 2024. "Interpretable semi-supervised clustering enables universal detection and intensity assessment of diverse aviation hazardous winds," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Huijun Zhang & Mingjie Zhang & Ran Yi & Yaxin Liu & Qiuzi Han Wen & Xin Meng, 2024. "Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study," Energies, MDPI, vol. 17(6), pages 1-33, March.
    10. Wang, Tao & Zhou, Hanxu & Fang, Qing & Han, Yanan & Guo, Xingxing & Zhang, Yahui & Qian, Chao & Chen, Hongsheng & Barland, Stéphane & Xiang, Shuiying & Lippi, Gian Luca, 2024. "Reservoir computing-based advance warning of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06185-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.