IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics0306261922006158.html
   My bibliography  Save this article

Exogenous atmospheric variables as wind speed predictors in machine learning

Author

Listed:
  • Dalton, Amaris
  • Bekker, Bernard

Abstract

The use of exogenous meteorological variables in wind speed prediction is currently enjoying much attention, particularly with the continued proliferation of wind power onto electricity networks. Typically, the selection of appropriate forecasting regimes or downscaling variables, along with the appropriate domain size, is based on expert knowledge and/or physical principles. There is however little consensus as to which variables are the best predictors. In this paper the wind speed predictive skill provided by 16 exogenous meteorological variables in machine learning algorithms is investigated as a function of: choice of regression model; choice of domain size; forecast period; meteorological variable elevation (i.e. pressure level); and testing site location. The principal components of numeric reanalysis datasets for each of 16 variables, along with lagged winds speeds, were employed as predictors at each of the test sites. The mean best performing wind speed predictors were found to be 950 hPa- vertical velocity; divergence; the u- & v-wind speed components; and geopotential heights. The ability to investigate and rank the forecast skill provided by meteorological predictors is important in gaining insight into physical processes influencing the wind resource and the improvement of wind speed forecasts. Though distinct predictors, domains and approaches were identified to significantly improve forecasting accuracy for a specific site, generalisations were found to be difficult to make, even in the small geographic area investigated. Therefore, it is recommended is that process described in paper is repeated for individual sites in selecting exogenous predictor variables.

Suggested Citation

  • Dalton, Amaris & Bekker, Bernard, 2022. "Exogenous atmospheric variables as wind speed predictors in machine learning," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006158
    DOI: 10.1016/j.apenergy.2022.119257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    2. Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
    3. Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
    4. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
    5. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    6. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    7. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    2. Parri, Srihari & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "A hybrid VMD based contextual feature representation approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 219(P1).
    3. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, James W., 2017. "Probabilistic forecasting of wind power ramp events using autoregressive logit models," European Journal of Operational Research, Elsevier, vol. 259(2), pages 703-712.
    2. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    3. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    4. Czujack, Corinna & Flôres Junior, Renato Galvão & Ginsburgh, Victor, 1995. "On long-run price comovements between paintings and prints," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 269, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    5. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    6. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    7. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.
    8. Muhammad Shafiullah & Ravinthirakumaran Navaratnam, 2016. "Do Bangladesh and Sri Lanka Enjoy Export-Led Growth? A Comparison of Two Small South Asian Economies," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 17(1), pages 114-132, March.
    9. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    10. Diana Ricciulli-Marín, 2020. "The Fiscal Cost of Conflict: Evidence from La Violencia in Colombia," Cuadernos de Historia Económica 53, Banco de la Republica de Colombia.
    11. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    12. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    13. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    14. Cantoni, Enrico & Gazzè, Ludovica & Schafer, Jerome, 2021. "Turnout in concurrent elections: Evidence from two quasi-experiments in Italy," European Journal of Political Economy, Elsevier, vol. 70(C).
    15. Vlatka Bilas & Mile Bosnjak, 2015. "Revealed Comparative Advantage And Merchandise Exports: The Case Of Merchandise Trade Between Croatia And The Rest Of The European Union Member Countries," Economic Thought and Practice, Department of Economics and Business, University of Dubrovnik, vol. 24(1), pages 29-47, june.
    16. Omaima A.G. Hassan & Peter Romilly, 2018. "Relations between corporate economic performance, environmental disclosure and greenhouse gas emissions: New insights," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 893-909, November.
    17. Claire G.Gilmore & Brian Lucey & Ginette M.McManus, 2005. "The Dynamics of Central European Equity Market Integration," The Institute for International Integration Studies Discussion Paper Series iiisdp069, IIIS.
    18. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    19. Stephen McKnight & Marco Robles Sánchez, 2014. "Is a monetary union feasible for Latin America? Evidence from real effective exchange rates and interest rate pass-through levels," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 29(2), pages 225-262.
    20. David Roodman, 2020. "The impact of life-saving interventions on fertility," Papers 2007.11388, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.