IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v204y2024ics1364032124005070.html
   My bibliography  Save this article

Dynamic non-constraint ensemble model for probabilistic wind power and wind speed forecasting

Author

Listed:
  • Wang, Yun
  • Xu, Houhua
  • Zou, Runmin
  • Zhang, Fan
  • Hu, Qinghua

Abstract

Accurate and reliable probabilistic wind power and wind speed forecasts provide large amounts of uncertainty information, which is important for wind farm management and grid dispatch optimization. In this study, a dynamic non-constraint ensemble model is proposed to generate probabilistic wind power and wind speed forecasts. First, four deep Gaussian neural networks (DGNNs) based on popular time series forecasting approaches and the maximum likelihood estimation-based loss function are designed to generate base probabilistic forecasts in the ensemble model. Second, to consider the overall uncertainty of base probabilistic forecasts, a novel ensemble strategy for probabilistic forecasting is derived based on the probability density function of the weighted sum of finite Gaussian random variables. Third, to obtain the ensemble weights for different base probabilistic forecasts, a dynamic non-constraint weight learning model, containing quantile function, convolutional neural network, and channel attention, is proposed to generate dynamic non-constraint ensemble weights. In addition, the maximal information coefficient, which measures the linear and nonlinear relationship between the historical wind data and the target, is used for selecting the optimal input length. The experimental results from four real-world wind datasets demonstrate that the proposed ensemble model achieves exceptional accuracy in probabilistic wind power and wind speed forecasting. It outperforms DGNNs by an average improvement of 4.9325 % in pinball loss and surpasses Gaussian process regression by 16.6382 %. The effectiveness of utilizing non-constraint ensemble weights is supported by the results obtained with different weight constraints. Furthermore, hypothesis testing further confirms the overall effectiveness of the proposed ensemble model.

Suggested Citation

  • Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Fan & Hu, Qinghua, 2024. "Dynamic non-constraint ensemble model for probabilistic wind power and wind speed forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005070
    DOI: 10.1016/j.rser.2024.114781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.