A self-powered and self-sensing wave energy harvester based on a three-rotor motor of axle disk type for sustainable sea
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.133512
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
- Wang, Yingguang, 2020. "Predicting absorbed power of a wave energy converter in a nonlinear mixed sea," Renewable Energy, Elsevier, vol. 153(C), pages 362-374.
- Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
- Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
- Li, Xiaofan & Liang, Changwei & Chen, Chien-An & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2020. "Optimum power analysis of a self-reactive wave energy point absorber with mechanically-driven power take-offs," Energy, Elsevier, vol. 195(C).
- Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
- Chen, Weixing & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2023. "A bio-inspired foldable-wing wave energy converter for ocean robots," Applied Energy, Elsevier, vol. 334(C).
- Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
- Harms, Julius & Hollm, Marten & Dostal, Leo & Kern, Thorsten A. & Seifried, Robert, 2022. "Design and optimization of a wave energy converter for drifting sensor platforms in realistic ocean waves," Applied Energy, Elsevier, vol. 321(C).
- Lou, Hu & Wang, Tao & Zhu, Shiqiang, 2022. "Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester," Energy, Elsevier, vol. 254(PA).
- Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
- Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
- Mandev, Murat Barış & Altunkaynak, Abdüsselam & Çelik, Anıl, 2024. "Enhancing wave energy harvesting: Performance analysis of a dual chamber oscillating water column," Energy, Elsevier, vol. 290(C).
- Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).
- Wuwei Feng & Hongya Chen & Qingping Zou & Di Wang & Xiang Luo & Cathal Cummins & Chuanqiang Zhang & Shujie Yang & Yuxiang Su, 2024. "A Contactless Coupled Pendulum and Piezoelectric Wave Energy Harvester: Model and Experiment," Energies, MDPI, vol. 17(4), pages 1-20, February.
- Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
- Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
- Nick J. Baker & Ahmed Almoraya & Mohammad A. H. Raihan & Steve McDonald & Luke McNabb, 2022. "Development and Wave Tank Demonstration of a Fully Controlled Permanent Magnet Drive for a Heaving Wave Energy Converter," Energies, MDPI, vol. 15(13), pages 1-21, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
- Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
- Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
- Azam, Ali & Ahmed, Ammar & Yi, Minyi & Zhang, Zutao & Zhang, Zeqiang & Aslam, Touqeer & Mugheri, Shoukat Ali & Abdelrahman, Mansour & Ali, Asif & Qi, Lingfei, 2024. "Wave energy evolution: Knowledge structure, advancements, challenges and future opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
- Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.
- Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
- Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
- Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
- Shi, Ge & Sun, Qichao & Xia, Yinshui & Jia, Shengyao & Pan, Jiaheng & Li, Qing & Wang, Xiudeng & Xia, Huakang & Wang, Binrui & Sun, Yanwei, 2024. "An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures," Energy, Elsevier, vol. 305(C).
- Ryan G. Coe & Giorgio Bacelli, 2023. "Useful Power Maximization for Wave Energy Converters," Energies, MDPI, vol. 16(1), pages 1-2, January.
- Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
- Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
- Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
- Zhang, Chongwei & Li, Donghai & Ding, Zhenyu & Liu, Yingyi & Cao, Feifei & Ning, Dezhi, 2024. "Wave energy converter with multiple degrees of freedom for sustainable repurposing of decommissioned offshore platforms: An experimental study," Applied Energy, Elsevier, vol. 376(PA).
- Wuwei Feng & Hongya Chen & Qingping Zou & Di Wang & Xiang Luo & Cathal Cummins & Chuanqiang Zhang & Shujie Yang & Yuxiang Su, 2024. "A Contactless Coupled Pendulum and Piezoelectric Wave Energy Harvester: Model and Experiment," Energies, MDPI, vol. 17(4), pages 1-20, February.
- Mahmoodi, Kumars & Razminia, Abolhassan & Ghassemi, Hassan, 2021. "Optimal control of wave energy converters with non-integer order performance indices: A dynamic programming approach," Renewable Energy, Elsevier, vol. 177(C), pages 1212-1233.
- Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
- Wang, Yingguang, 2020. "A novel environmental contour method for predicting long-term extreme wave conditions," Renewable Energy, Elsevier, vol. 162(C), pages 926-933.
- Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
More about this item
Keywords
Two-stage accelerating mechanism; Three-stage reversing mechanism; Wave monitoring; Fault self-monitoring; Energy harvesting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032882. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.