IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp306-319.html
   My bibliography  Save this article

On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study

Author

Listed:
  • Wen, Binrong
  • Jiang, Zhihao
  • Li, Zhanwei
  • Peng, Zhike
  • Dong, Xingjian
  • Tian, Xinliang

Abstract

Aerodynamic loading is one of the most dominating environmental excitations of Floating Wind Turbines (FWTs) and plays an important role in the FWT dynamics. In this study, we developed a model Spar-type FWT and then constructed a dedicated experiment apparatus to reveal the aerodynamic loading effects. As for the floater motion, the wind loading serves as an external exciting force, as well as potential damping source and equivalent added mass item. To take all these roles into account, we proposed a concept of aerodynamic loading effect. The presence of aerodynamic loading effect is validated by free decay tests and white noise wave tests. Results show that the aerodynamic loading effect alters the natural frequencies and damping ratios of the FWT system. We suggest the FWT designers refer to the altered natural frequencies when designing the floater and the FWT controllers. We experimentally observed that the increased aerodynamic loading seems to suppress the pitch resonance vibration while amplifies the resonance vibration at surge frequency. Besides, the nacelle motions, blade loads, and the tower dynamics, are all significantly impacted by the aerodynamic loading effect. The presented results are potentially helpful for optimizing FWTs and developing advanced FWT controllers.

Suggested Citation

  • Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:306-319
    DOI: 10.1016/j.renene.2021.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Liang & Liu, Yuanchuan & Yuan, Zhiming & Gao, Yan, 2018. "Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines," Energy, Elsevier, vol. 157(C), pages 379-390.
    2. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    3. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    4. Liu, Xiong & Lu, Cheng & Li, Gangqiang & Godbole, Ajit & Chen, Yan, 2017. "Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines," Applied Energy, Elsevier, vol. 204(C), pages 1101-1114.
    5. Salehyar, Sara & Zhu, Qiang, 2015. "Aerodynamic dissipation effects on the rotating blades of floating wind turbines," Renewable Energy, Elsevier, vol. 78(C), pages 119-127.
    6. Li, Xiaofan & Liang, Changwei & Chen, Chien-An & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2020. "Optimum power analysis of a self-reactive wave energy point absorber with mechanically-driven power take-offs," Energy, Elsevier, vol. 195(C).
    7. Goupee, Andrew J. & Kimball, Richard W. & Dagher, Habib J., 2017. "Experimental observations of active blade pitch and generator control influence on floating wind turbine response," Renewable Energy, Elsevier, vol. 104(C), pages 9-19.
    8. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming, 2017. "Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine," Energy, Elsevier, vol. 141(C), pages 2054-2068.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    2. Chen, Shuo & Jiang, Boxi & Li, Xiaofan & Huang, Jianuo & Wu, Xian & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2022. "Design, dynamic modeling and wave basin verification of a Hybrid Wave–Current Energy Converter," Applied Energy, Elsevier, vol. 321(C).
    3. Yang, Can & Xiao, Longfei & Deng, Shi & Chen, Peng & Liu, Lei & Cheng, Zhengshun, 2024. "An experimental study on the aerodynamic-induced effects of a semi-submersible floating wind turbine," Renewable Energy, Elsevier, vol. 222(C).
    4. Chen, Jianbing & Liu, Zenghui & Song, Yupeng & Peng, Yongbo & Li, Jie, 2022. "Experimental study on dynamic responses of a spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 560-578.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
    2. Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
    3. Tao Luo & De Tian & Ruoyu Wang & Caicai Liao, 2018. "Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine," Energies, MDPI, vol. 11(12), pages 1-24, November.
    4. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
    5. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
    6. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
    7. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    8. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
    9. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    10. Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
    11. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming, 2017. "Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine," Energy, Elsevier, vol. 141(C), pages 2054-2068.
    12. Meng, Qingshen & Hua, Xugang & Chen, Chao & Zhou, Shuai & Liu, Feipeng & Chen, Zhengqing, 2022. "Analytical study on the aerodynamic and hydrodynamic damping of the platform in an operating spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 198(C), pages 772-788.
    13. Bowen Zhou & Zhibo Zhang & Guangdi Li & Dongsheng Yang & Matilde Santos, 2023. "Review of Key Technologies for Offshore Floating Wind Power Generation," Energies, MDPI, vol. 16(2), pages 1-26, January.
    14. Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
    15. Su, Jie & Li, Yu & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan, 2021. "Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion," Energy, Elsevier, vol. 225(C).
    16. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
    17. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    19. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    20. Sharma, Kaushik & Ahmed, M. Rafiuddin, 2016. "Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula," Renewable Energy, Elsevier, vol. 89(C), pages 168-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:306-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.