A bio-inspired foldable-wing wave energy converter for ocean robots
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.120696
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
- Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
- Zhang, Yongkuang & Zhou, Yu & Chen, Weixing & Zhang, Weidong & Gao, Feng, 2022. "Design, modeling and numerical analysis of a WEC-Glider (WEG)," Renewable Energy, Elsevier, vol. 188(C), pages 911-921.
- Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
- Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
- Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
- Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
- Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
- Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).
- Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
- Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
- Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
- Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
- Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
- Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
- Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
- Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
- George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
- Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
- Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
- Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
- Arias, Francisco J., 2023. "The thermodynamic limit of extractable kinetic energy buoyancy engine," Applied Energy, Elsevier, vol. 350(C).
- Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
- Carrelhas, A.A.D. & Gato, L.M.C. & Morais, F.J.F., 2024. "Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions," Renewable Energy, Elsevier, vol. 220(C).
- George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
- Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
More about this item
Keywords
FW-WEC; Wave-energy wing; Foldable structure; Hydrodynamic model; Wave tank experiment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.