IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015639.html
   My bibliography  Save this article

A low-frequency piezoelectric wave energy harvester based on segmental beam and double magnetic excitation

Author

Listed:
  • Liu, Renwen
  • He, Lipeng
  • Yang, Bowen
  • Li, Xiaotao
  • Zhang, Limin
  • Zhong, Feng

Abstract

Wave energy is a source of clean energy with huge reserves, but its application is limited owing to the low frequency of the waves. This paper proposes a low-frequency piezoelectric wave energy harvester (L-PWEH) based on segmental beam and double magnetic excitation. The L-PWEH uses a combination of mechanical and magnetic frequency tuning to achieve an improved output performance in low-frequency wave environments. The natural frequency of the segmental beam is effectively reduced by using the mechanical tuning method of the segmental beam structure. With the introduction of the tuning magnet, a double magnetic excitation of the segmental beam is formed to make it more susceptible to deformation. Multiple magnets on the rotor for excitation can obtain a better broadband effect. Through theoretical and simulation analysis, the primary variables influencing the output performance of the L-PWEH are discovered. Under ideal testing conditions, the L-PWEH can produce a peak power of 31.21 mW when the external resistance is 30 kΩ. The thermohygrometer can function effectively and be illuminated by 142 light-emitting diodes (LEDs) thanks to the L-PWEH. These findings confirm that the L-PWEH can supply low-power electronic devices with electricity.

Suggested Citation

  • Liu, Renwen & He, Lipeng & Yang, Bowen & Li, Xiaotao & Zhang, Limin & Zhong, Feng, 2024. "A low-frequency piezoelectric wave energy harvester based on segmental beam and double magnetic excitation," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015639
    DOI: 10.1016/j.energy.2024.131790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    2. He, Lipeng & Liu, Renwen & Liu, Xuejin & Zhang, Zheng & Zhang, Limin & Cheng, Guangming, 2023. "A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling," Renewable Energy, Elsevier, vol. 210(C), pages 397-407.
    3. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    4. Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
    5. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Shi, Ge & Zeng, Wentao & Xia, Yinshui & Xu, Jubing & Jia, Shengyao & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2023. "A floating piezoelectric electromagnetic hybrid wave vibration energy harvester actuated by a rotating wobble ball," Energy, Elsevier, vol. 270(C).
    8. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Lipeng & Liu, Renwen & Liu, Xuejin & Zhang, Zheng & Zhang, Limin & Cheng, Guangming, 2023. "A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling," Renewable Energy, Elsevier, vol. 210(C), pages 397-407.
    2. Du, Xiaozhen & Chen, Haixiang & Li, Chicheng & Li, Zihao & Wang, Wenxiu & Guo, Dongxing & Yu, Hong & Wang, Junlei & Tang, Lihua, 2024. "Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column," Applied Energy, Elsevier, vol. 353(PA).
    3. Chen, Shao-En & Pan, Fu-Ting & Yang, Ray-Yeng & Wu, Chia-Che, 2023. "A multi-physics system integration and modeling method for piezoelectric wave energy harvester," Applied Energy, Elsevier, vol. 349(C).
    4. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
    5. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Wuwei Feng & Hongya Chen & Qingping Zou & Di Wang & Xiang Luo & Cathal Cummins & Chuanqiang Zhang & Shujie Yang & Yuxiang Su, 2024. "A Contactless Coupled Pendulum and Piezoelectric Wave Energy Harvester: Model and Experiment," Energies, MDPI, vol. 17(4), pages 1-20, February.
    7. Bjarnhedinn Gudlaugsson & Bethany Marguerite Bronkema & Ivana Stepanovic & David Christian Finger, 2024. "A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting," Energies, MDPI, vol. 17(22), pages 1-42, November.
    8. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    9. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie, 2024. "An optimization approach for geometry design of multi-axis wave energy converter," Energy, Elsevier, vol. 301(C).
    10. Chenchen Li & Shifu Liu & Hongduo Zhao & Yu Tian, 2022. "Performance Assessment and Comparison of Two Piezoelectric Energy Harvesters Developed for Pavement Application: Case Study," Sustainability, MDPI, vol. 14(2), pages 1-11, January.
    11. He, Lipeng & Wang, Shuangjian & Zheng, Xiaotian & Liu, Lei & Tian, Xiaochao & Sun, Baoyu, 2022. "Research-based on a low-frequency non-contact magnetic coupling piezoelectric energy harvester," Energy, Elsevier, vol. 258(C).
    12. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    13. Zhang, Baoshou & Li, Boyang & Li, Canpeng & Yu, Haidong & Wang, Dezheng & Shi, Renhe, 2023. "Effects of variable damping on hydrokinetic energy conversion of a cylinder using wake-induced vibration," Renewable Energy, Elsevier, vol. 213(C), pages 176-194.
    14. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.
    15. Mao, Mingxuan & Chen, Siyu & Yan, Jinyue, 2023. "Modelling pavement photovoltaic arrays with cellular automata," Applied Energy, Elsevier, vol. 330(PB).
    16. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    17. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    18. Yuan, Huazhi & Liu, Jikang & Wang, Chaohui & Wang, Shuai & Cao, Hongyun, 2024. "Optimization of piezoelectric device with both mechanical and electrical properties for power supply of road sensors," Applied Energy, Elsevier, vol. 364(C).
    19. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    20. Chungil Kim & Hyung-Jun Song, 2022. "Glare-Free Airport-Based Photovoltaic System via Optimization of Its Azimuth Angle," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.