IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031396.html
   My bibliography  Save this article

Decarbonizing urban passenger transportation: Policy effectiveness and interactions

Author

Listed:
  • Ye, Hui
  • Wu, Fei
  • Yan, Tiantian
  • Li, Zexuan
  • Zheng, Zhengnan
  • Zhou, Dequn
  • Wang, Qunwei

Abstract

The urban passenger transportation plays a pivotal role in achieving ambitious climate targets. Exploring its opportunities for decarbonization requires a comprehensive understanding of the impacts of different policy designs. This study develops an integrated model for simulating the effectiveness and interactions of various policy designs aimed at decarbonizing urban passenger transportation. It distinguishes itself from previous studies by considering a broad range of criteria, including mitigation effectiveness, cost effectiveness, and transition effectiveness. It also assesses the overall performance of various policy options based on these effectiveness criteria. In an urban case study, we have identified the complementary nature of the majority of policy mixes and also revealed conflicting effects when implementing a supplementary policy, such as carbon tax and fuel economy regulation. The concurrent implementation of multiple policies can yield synergistic effects or trade-offs, with the former being widely acknowledged in the context of energy transition, while the latter is more commonly observed in relation to emissions reductions and cost savings. This study also reveals a trade-off effect across various effectiveness criteria, underscoring the significance of formulating well-balanced policy packages to promote sustainable urban passenger transport.

Suggested Citation

  • Ye, Hui & Wu, Fei & Yan, Tiantian & Li, Zexuan & Zheng, Zhengnan & Zhou, Dequn & Wang, Qunwei, 2024. "Decarbonizing urban passenger transportation: Policy effectiveness and interactions," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031396
    DOI: 10.1016/j.energy.2024.133363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonn Axsen & Patrick Plötz & Michael Wolinetz, 2020. "Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport," Nature Climate Change, Nature, vol. 10(9), pages 809-818, September.
    2. Jenn, Alan & Azevedo, Inês & Michalek, Jeremy Joseph, 2019. "Alternative-Fuel-Vehicle Policy Interactions Increase U.S. Greenhouse Gas Emissions," OSF Preprints n69tp, Center for Open Science.
    3. Hoyle, Aaron & Peters, Jotham & Jaccard, Mark & Rhodes, Ekaterina, 2024. "Additional or accidental? Simulating interactions between a low-carbon fuel standard and other climate policy instruments in Canada," Energy Policy, Elsevier, vol. 185(C).
    4. Alexandre Milovanoff & I. Daniel Posen & Heather L. MacLean, 2020. "Electrification of light-duty vehicle fleet alone will not meet mitigation targets," Nature Climate Change, Nature, vol. 10(12), pages 1102-1107, December.
    5. Tvinnereim, Endre & Mehling, Michael, 2018. "Carbon pricing and deep decarbonisation," Energy Policy, Elsevier, vol. 121(C), pages 185-189.
    6. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    7. Karplus, Valerie J. & Paltsev, Sergey & Babiker, Mustafa & Reilly, John M., 2013. "Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate policy in the United States," Energy Economics, Elsevier, vol. 36(C), pages 322-333.
    8. Espinosa Valderrama, Mónica & Cadena Monroy, Ángela Inés & Behrentz Valencia, Eduardo, 2019. "Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector," Energy Policy, Elsevier, vol. 124(C), pages 111-122.
    9. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    10. Lisa Winkler & Drew Pearce & Jenny Nelson & Oytun Babacan, 2023. "The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    12. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    13. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    14. David L. McCollum & Charlie Wilson & Michela Bevione & Samuel Carrara & Oreane Y. Edelenbosch & Johannes Emmerling & Céline Guivarch & Panagiotis Karkatsoulis & Ilkka Keppo & Volker Krey & Zhenhong Li, 2018. "Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles," Nature Energy, Nature, vol. 3(8), pages 664-673, August.
    15. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    16. Nicolas Koch & Lennard Naumann & Felix Pretis & Nolan Ritter & Moritz Schwarz, 2022. "Attributing agnostically detected large reductions in road CO2 emissions to policy mixes," Nature Energy, Nature, vol. 7(9), pages 844-853, September.
    17. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Wu, F. & Wang, S.Y. & Zhou, P., 2023. "Marginal abatement cost of carbon dioxide emissions: The role of abatement options," European Journal of Operational Research, Elsevier, vol. 310(2), pages 891-901.
    19. Small, Kenneth A., 2012. "Energy policies for passenger motor vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 874-889.
    20. Lepitzki, Justin & Axsen, Jonn, 2018. "The role of a low carbon fuel standard in achieving long-term GHG reduction targets," Energy Policy, Elsevier, vol. 119(C), pages 423-440.
    21. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    22. Dimanchev, Emil & Knittel, Christopher R., 2023. "Designing climate policy mixes: Analytical and energy system modeling approaches," Energy Economics, Elsevier, vol. 122(C).
    23. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    24. Mine Isik & Rebecca Dodder & P. Ozge Kaplan, 2021. "Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates," Nature Energy, Nature, vol. 6(1), pages 92-104, January.
    25. Hasan, M.A. & Chapman, R. & Frame, D.J., 2020. "Acceptability of transport emissions reduction policies: A multi-criteria analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    26. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    27. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    28. Charlotte Liotta & Vincent Viguié & Felix Creutzig, 2023. "Environmental and welfare gains via urban transport policy portfolios across 120 cities," Post-Print hal-04445981, HAL.
    29. Charlotte Liotta & Vincent Viguié & Felix Creutzig, 2023. "Environmental and welfare gains via urban transport policy portfolios across 120 cities," Nature Sustainability, Nature, vol. 6(9), pages 1067-1076, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    2. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    3. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    4. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    5. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    6. Hössinger, Reinhard & Peer, Stefanie & Juschten, Maria, 2023. "Give citizens a task: An innovative tool to compose policy bundles that reach the climate goal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Hoyle, Aaron & Peters, Jotham & Jaccard, Mark & Rhodes, Ekaterina, 2024. "Additional or accidental? Simulating interactions between a low-carbon fuel standard and other climate policy instruments in Canada," Energy Policy, Elsevier, vol. 185(C).
    8. Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    10. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    11. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    12. Axsen, Jonn & Wolinetz, Michael, 2021. "Taxes, tolls and ZEV zones for climate: Synthesizing insights on effectiveness, efficiency, equity, acceptability and implementation," Energy Policy, Elsevier, vol. 156(C).
    13. Mark Purdon & Julie Witcover & Colin Murphy & Sonya Ziaja & Mark Winfield & Genevieve Giuliano & Charles Séguin & Colleen Kaiser & Jacques Papy & Lewis Fulton, 2021. "Climate and transportation policy sequencing in California and Quebec," Review of Policy Research, Policy Studies Organization, vol. 38(5), pages 596-630, September.
    14. Long, Zoe & Kitt, Shelby & Axsen, Jonn, 2021. "Who supports which low-carbon transport policies? Characterizing heterogeneity among Canadian citizens," Energy Policy, Elsevier, vol. 155(C).
    15. Lisa Winkler & Drew Pearce & Jenny Nelson & Oytun Babacan, 2023. "The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Ou, Yang & Kittner, Noah & Babaee, Samaneh & Smith, Steven J. & Nolte, Christopher G. & Loughlin, Daniel H., 2021. "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model," Applied Energy, Elsevier, vol. 300(C).
    17. Zhu, Bing & Hu, Simon & Chen, Xiqun (Michael) & Roncoli, Claudio & Lee, Der-Horng, 2024. "Uncovering driving factors and spatiotemporal patterns of urban passenger car CO2 emissions: A case study in Hangzhou, China," Applied Energy, Elsevier, vol. 375(C).
    18. Liu, Haiyue & Zhang, Ruchuan & Zhou, Li & Li, Aijun, 2023. "Evaluating the financial performance of companies from the perspective of fund procurement and application: New strategy cross efficiency network data envelopment analysis models," Energy, Elsevier, vol. 269(C).
    19. Tobias Eibinger & Hans Manner & Karl Steininger, 2024. "Shifting Gears? The Impact of Austria's Transport Policy Mix on CO2 Emissions from Passenger Cars," Graz Economics Papers 2024-10, University of Graz, Department of Economics.
    20. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.