Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121163
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jeppesen, M. & Brear, M.J. & Chattopadhyay, D. & Manzie, C. & Dargaville, R. & Alpcan, T., 2016. "Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 1: Problem formulation and modelling," Energy, Elsevier, vol. 101(C), pages 606-620.
- Haoqi, Qian & Libo, Wu & Weiqi, Tang, 2017.
"“Lock-in” effect of emission standard and its impact on the choice of market based instruments,"
Energy Economics, Elsevier, vol. 63(C), pages 41-50.
- Qian, Haoqi & Wu, Libo & Tang, Weiqi, 2016. "“Lock-in” Effect of Emission Standard and Its Impact on the Choice of Market Based Instruments," MPRA Paper 72470, University Library of Munich, Germany.
- Brear, M.J. & Jeppesen, M. & Chattopadhyay, D. & Manzie, C. & Alpcan, T. & Dargaville, R., 2016. "Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 2: Scenarios and policy implications," Energy, Elsevier, vol. 101(C), pages 621-628.
- Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014.
"Marginal abatement cost curves and the optimal timing of mitigation measures,"
Energy Policy, Elsevier, vol. 66(C), pages 645-653.
- Vogt-Schilb, Adrien & Hallegatte, Stephane, 2011. "When starting with the most expensive option makes sense : use and misuse of marginal abatement cost curves," Policy Research Working Paper Series 5803, The World Bank.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "Marginal Abatement Cost Curves and the Optimal Timing of Mitigation Measures," Working Papers 2013.89, Fondazione Eni Enrico Mattei.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "When Starting with the Most Expensive Option Makes Sense On Marginal Abatement Cost Curves and Optimal Abatement Pathways," Working Papers hal-00626261, HAL.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Post-Print hal-00916328, HAL.
- Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2013. "Marginal Abatement Cost Curves and the Optimal Timing of Mitigation Measures," Climate Change and Sustainable Development 162372, Fondazione Eni Enrico Mattei (FEEM).
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "When Starting with the Most Expensive Option Makes Sense On Marginal Abatement Cost Curves and Optimal Abatement Pathways," CIRED Working Papers hal-00626261, HAL.
- Klepper, Gernot & Peterson, Sonja, 2006.
"Marginal abatement cost curves in general equilibrium: The influence of world energy prices,"
Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
- Gernot Klepper & Sonja Peterson, 2004. "Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices," Working Papers 2004.136, Fondazione Eni Enrico Mattei.
- Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Open Access Publications from Kiel Institute for the World Economy 3775, Kiel Institute for the World Economy (IfW Kiel).
- Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
- Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
- Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
- Simões, Sofia & Cleto, João & Fortes, Patricia & Seixas, Júlia & Huppes, Gjalt, 2008. "Cost of energy and environmental policy in Portuguese CO2 abatement--scenario analysis to 2020," Energy Policy, Elsevier, vol. 36(9), pages 3598-3611, September.
- Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
- Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
- Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
- Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
- Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
- Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2015. "The sensitivity of climate-economy CGE models to energy-related elasticity parameters: Implications for climate policy design," Economic Modelling, Elsevier, vol. 51(C), pages 38-52.
- Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
- Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
- Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
- Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
- Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
- Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.
- Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
- Garg, Amit & Shukla, P.R. & Maheshwari, Jyoti & Upadhyay, Jigeesha, 2014. "An assessment of household electricity load curves and corresponding CO2 marginal abatement cost curves for Gujarat state, India," Energy Policy, Elsevier, vol. 66(C), pages 568-584.
- Hamamoto, Mitsutsugu, 2013. "Energy-saving behavior and marginal abatement cost for household CO2 emissions," Energy Policy, Elsevier, vol. 63(C), pages 809-813.
- Wang, Zanxin & Wei, Wei & Luo, Junwen & Calderon, Margaret, 2019. "The effects of petroleum product price regulation on macroeconomic stability in China," Energy Policy, Elsevier, vol. 132(C), pages 96-105.
- Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
- Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Tomaschek, Jan, 2015. "Marginal abatement cost curves for policy recommendation – A method for energy system analysis," Energy Policy, Elsevier, vol. 85(C), pages 376-385.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yan, Jiaze & Wang, Ge & Chen, Siyuan & Zhang, He & Qian, Jiaqi & Mao, Yuxuan, 2022. "Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks," Energy, Elsevier, vol. 254(PA).
- Salimi, Mohsen & Moradi, Mohammad Ali & Amidpour, Majid, 2022. "Modeling and outlook analysis of gasoline supply and demand and sensitivity analysis of main economic and social drivers," Energy, Elsevier, vol. 256(C).
- Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
- Zhao, Chuyun & Tang, Jinjun & Gao, Wenyuan & Zeng, Yu & Li, Zhitao, 2024. "Many-objective optimization of multi-mode public transportation under carbon emission reduction," Energy, Elsevier, vol. 286(C).
- Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
- Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
- Qiang Li & Mo Tong & Mian Jia & Jie Yang, 2022. "Towards Low Carbon: A Lightweight Design of Automotive Brake Hub," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
- Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).
- Shaobo Liu & Kang He & Xiaofeng Pan & Yangyang Hu, 2023. "Review of Development Trend of Transportation Energy System and Energy Usages in China Considering Influences of Intelligent Technologies," Energies, MDPI, vol. 16(10), pages 1-36, May.
- Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
- Jiang, Meizhi & Wang, Benmei & Hao, Yingjun & Chen, Shijun & Wen, Yuanqiao & Yang, Zaili, 2024. "Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China," Transport Policy, Elsevier, vol. 145(C), pages 177-186.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
- Levihn, Fabian, 2016. "On the problem of optimizing through least cost per unit, when costs are negative: Implications for cost curves and the definition of economic efficiency," Energy, Elsevier, vol. 114(C), pages 1155-1163.
- Du, Limin & Hanley, Aoife & Wei, Chu, 2015.
"Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis,"
Energy Economics, Elsevier, vol. 48(C), pages 217-229.
- Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the marginal abatement cost curve of CO2 emissions in China: Provincial panel data analysis," Kiel Working Papers 1985, Kiel Institute for the World Economy (IfW Kiel).
- Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
- Levihn, F. & Nuur, C. & Laestadius, S., 2014. "Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account," Energy, Elsevier, vol. 76(C), pages 336-344.
- Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
- Tomaschek, Jan, 2015. "Marginal abatement cost curves for policy recommendation – A method for energy system analysis," Energy Policy, Elsevier, vol. 85(C), pages 376-385.
- Chen Shi & Yujiao Xian & Zhixin Wang & Ke Wang, 2023. "Marginal abatement cost curve of carbon emissions in China: a functional data analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-25, February.
- Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
- Haoqi, Qian & Libo, Wu & Weiqi, Tang, 2017.
"“Lock-in” effect of emission standard and its impact on the choice of market based instruments,"
Energy Economics, Elsevier, vol. 63(C), pages 41-50.
- Qian, Haoqi & Wu, Libo & Tang, Weiqi, 2016. "“Lock-in” Effect of Emission Standard and Its Impact on the Choice of Market Based Instruments," MPRA Paper 72470, University Library of Munich, Germany.
- Van den Bergh, Kenneth & Delarue, Erik, 2015. "Quantifying CO2 abatement costs in the power sector," Energy Policy, Elsevier, vol. 80(C), pages 88-97.
- Wang, Ke & Wang, Shanshan & Liu, Lei & Yue, Hui & Zhang, Ruiqin & Tang, Xiaoyan, 2016. "Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China," Applied Energy, Elsevier, vol. 184(C), pages 810-819.
- Kejia Yang & Yalin Lei, 2017. "The carbon dioxide marginal abatement cost calculation of Chinese provinces based on stochastic frontier analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 505-521, January.
- Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
- Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
- Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
- Marshman, Daniel & Brear, Michael & Ring, Brendan, 2022. "Impact of unit commitment and RoCoF constraints on revenue sufficiency in decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 106(C).
- Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
- Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
More about this item
Keywords
Marginal abatement curve; TIMES model; Carbon peak policy; PHEV;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.