IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031293.html
   My bibliography  Save this article

Solar methanol production from carbon dioxide and water using NaA zeolitic membrane reactor with pressurized solid oxide electrolysis cell

Author

Listed:
  • Lin, Zihan
  • Khan, Muhammad Sajid
  • Chen, Ji
  • Xia, Qi
  • Ma, Kewei
  • Ding, Weihua
  • Jiao, Long
  • Gao, Zengliang
  • Chen, Chen

Abstract

Solar-driven methanol synthesis coupled with water electrolysis can achieve carbon-negative methanol production. In this study, a solar methanol production system using water-conduction membrane reactor coupled with pressurized solid oxide electrolysis cell is proposed. A methanol synthesis membrane reactor model and a solar-driven pressurized solid oxide electrolysis cell model are developed and validated. Under the specified conditions, the conversion efficiency of the membrane reactor is found to be twice as high as that of a conventional reactor. A thermodynamic model is developed to simulate the system's performance. Using this model, the energy flows within the system are visually represented through a Sankey diagram, providing a clear illustration of energy distribution and losses. Additionally, effects of the solid oxide electrolysis cell temperature, current density, methanol synthesis temperature and pressure on the system performance are investigated parametrically. An optimum solar-to-methanol efficiency of 7.3 % is obtained. Furthermore, the economic analysis shows the levelized cost of methanol close to 1.40 Euro/kg and the payback period is around 4.5 years. This study proposed a novel efficient solar methanol production system.

Suggested Citation

  • Lin, Zihan & Khan, Muhammad Sajid & Chen, Ji & Xia, Qi & Ma, Kewei & Ding, Weihua & Jiao, Long & Gao, Zengliang & Chen, Chen, 2024. "Solar methanol production from carbon dioxide and water using NaA zeolitic membrane reactor with pressurized solid oxide electrolysis cell," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031293
    DOI: 10.1016/j.energy.2024.133353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    2. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    3. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    4. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).
    5. Kunnakorn, D. & Rirksomboon, T. & Siemanond, K. & Aungkavattana, P. & Kuanchertchoo, N. & Chuntanalerg, P. & Hemra, K. & Kulprathipanja, S. & James, R.B. & Wongkasemjit, S., 2013. "Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water–ethanol separation," Renewable Energy, Elsevier, vol. 51(C), pages 310-316.
    6. Remo Schäppi & David Rutz & Fabian Dähler & Alexander Muroyama & Philipp Haueter & Johan Lilliestam & Anthony Patt & Philipp Furler & Aldo Steinfeld, 2022. "Drop-in fuels from sunlight and air," Nature, Nature, vol. 601(7891), pages 63-68, January.
    7. Hu, Kewei & Fang, Jiakun & Ai, Xiaomeng & Huang, Danji & Zhong, Zhiyao & Yang, Xiaobo & Wang, Lei, 2022. "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling," Applied Energy, Elsevier, vol. 312(C).
    8. Sanz-Bermejo, Javier & Muñoz-Antón, Javier & Gonzalez-Aguilar, José & Romero, Manuel, 2014. "Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production," Applied Energy, Elsevier, vol. 131(C), pages 238-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Kakunuri, Manohar, 2021. "CO2 capture and utilization from supercritical coal direct chemical looping combustion power plant – Comprehensive analysis of different case studies," Applied Energy, Elsevier, vol. 304(C).
    2. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    3. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    4. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    5. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    6. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    7. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    8. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    9. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    10. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    11. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
    12. Ana-Maria Chirosca & Eugen Rusu & Viorel Minzu, 2024. "Green Hydrogen—Production and Storage Methods: Current Status and Future Directions," Energies, MDPI, vol. 17(23), pages 1-27, November.
    13. Dong, Tianshu & Duan, Xiudong & Huang, Yuanyuan & Huang, Danji & Luo, Yingdong & Liu, Ziyu & Ai, Xiaomeng & Fang, Jiakun & Song, Chaolong, 2024. "Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform," Applied Energy, Elsevier, vol. 356(C).
    14. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    15. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    16. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    17. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    18. Zhao, Yi & Hagi, Hayato & Delahaye, Bruno & Maréchal, François, 2024. "A holistic approach to refinery decarbonization based on atomic, energy and exergy flow analysis," Energy, Elsevier, vol. 296(C).
    19. del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).
    20. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.