IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923019050.html
   My bibliography  Save this article

Structural optimization study on porous transport layers of sintered titanium for polymer electrolyte membrane electrolyzers

Author

Listed:
  • Xu, Chenyang
  • Wang, Jian
  • Wang, Jianzhong
  • Yang, Kun
  • Li, Guangzhong
  • Gao, Wenbin
  • Wang, Hao
  • Zhao, Shaoyang

Abstract

An effective way to improve the performance of polymer electrolyte membrane (PEM) electrolyzers is to optimize the structural design of porous transport layers. This paper uses mirco-computed tomography (μ-CT) to study the three-dimensional microstructure distribution characteristics of commercial sintered titanium powder-based porous transport layers (PTL). A three-dimensional PTLs model with different porosity, pore diameter and thickness was established by Stochastic reconstruction model method. In addition, lattice Boltzmann method is used to study the influence of PTL structural parameters and single-phase permeability. The results show that the large compression thickness not only can significantly improve the PTL single-phase permeability, but also has little effect on the interface contact area. In addition, an increase in pore size and porosity will increase the transport performance while reducing interface contact. It is recommended that the average pore size of PTL should be greater than 10 μm, and the porosity should be greater than 30%. This work can be used to guide the preparation technology of PTL in order to improve the performance of PEM electrolyzer.

Suggested Citation

  • Xu, Chenyang & Wang, Jian & Wang, Jianzhong & Yang, Kun & Li, Guangzhong & Gao, Wenbin & Wang, Hao & Zhao, Shaoyang, 2024. "Structural optimization study on porous transport layers of sintered titanium for polymer electrolyte membrane electrolyzers," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019050
    DOI: 10.1016/j.apenergy.2023.122541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jang, Dohyung & Cho, Hyun-Seok & Kang, Sanggyu, 2021. "Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system," Applied Energy, Elsevier, vol. 287(C).
    2. Wang, Yulin & Xu, Haokai & Zhang, Zhe & Li, Hua & Wang, Xiaodong, 2022. "Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 320(C).
    3. Hu, Kewei & Fang, Jiakun & Ai, Xiaomeng & Huang, Danji & Zhong, Zhiyao & Yang, Xiaobo & Wang, Lei, 2022. "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
    2. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    3. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    4. Dong, Tianshu & Duan, Xiudong & Huang, Yuanyuan & Huang, Danji & Luo, Yingdong & Liu, Ziyu & Ai, Xiaomeng & Fang, Jiakun & Song, Chaolong, 2024. "Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform," Applied Energy, Elsevier, vol. 356(C).
    5. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    6. del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).
    7. Hao Guo & Hyeon-Jung Kim & Sang-Young Kim, 2022. "Research on Hydrogen Production by Water Electrolysis Using a Rotating Magnetic Field," Energies, MDPI, vol. 16(1), pages 1-11, December.
    8. Simin Luo & Tengfei Zhang & Hongning Xu & Jie Zhang & Haichao Zhao & Jimmy Yun & Hong Zhao, 2024. "Optimizing Alkaline Water Electrolysis: A Dual-Model Approach for Enhanced Hydrogen Production Efficiency," Energies, MDPI, vol. 17(21), pages 1-15, November.
    9. Abdel-Raheem Youssef & Mohamad Mallah & Abdelfatah Ali & Mostafa F. Shaaban & Essam E. M. Mohamed, 2023. "Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units," Energies, MDPI, vol. 16(8), pages 1-18, April.
    10. Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
    11. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    12. He, Wei & Zhang, Jifang & Guo, Rui & Pei, Chenchen & Li, Hailong & Liu, Shengchun & Wei, Jie & Wang, Yulin, 2022. "Performance analysis and structural optimization of a finned liquid-cooling radiator for chip heat dissipation," Applied Energy, Elsevier, vol. 327(C).
    13. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant," Applied Energy, Elsevier, vol. 359(C).
    14. Sleiti, Ahmad K. & Al-Ammari, Wahib A. & Musharavati, Farayi, 2024. "Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process," Energy, Elsevier, vol. 307(C).
    15. Hesham Alhumade & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Increasing Output Power of a Microfluidic Fuel Cell Using Fuzzy Modeling and Jellyfish Search Optimization," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    16. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    17. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    18. Chen, Chaogang & Gao, Yuan, 2024. "Using multi-threshold non-local means joint distribution method to analysis the spatial distribution patterns of binder and fibers in gas diffusion layers of fuel cells," Applied Energy, Elsevier, vol. 358(C).
    19. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    20. Xu, Guanxin & Wu, Yan & Tang, Shuo & Wang, Yufei & Yu, Xinhai & Ma, Mingyan, 2024. "Optimal design of hydrogen production processing coupling alkaline and proton exchange membrane electrolyzers," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.