IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp238-247.html
   My bibliography  Save this article

Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production

Author

Listed:
  • Sanz-Bermejo, Javier
  • Muñoz-Antón, Javier
  • Gonzalez-Aguilar, José
  • Romero, Manuel

Abstract

Steam electrolysis through Solid-Oxide Electrolysis Cell (SOEC) coupled with concentrating solar power (CSP) plants stands for a promising system of large-scale carbon-free hydrogen production process. This study presents an energetic analysis on integration schemes of a SOEC Unit into a direct steam generation solar tower plant. Several configurations have been analyzed aiming at minimizing the penalties of the integration over the CSP plant, and maximizing the electrolysis performance. Atmospheric and high pressure operation modes of SOEC have been analyzed.

Suggested Citation

  • Sanz-Bermejo, Javier & Muñoz-Antón, Javier & Gonzalez-Aguilar, José & Romero, Manuel, 2014. "Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production," Applied Energy, Elsevier, vol. 131(C), pages 238-247.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:238-247
    DOI: 10.1016/j.apenergy.2014.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pihl, Erik & Heyne, Stefan & Thunman, Henrik & Johnsson, Filip, 2010. "Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (CCGT) plants for natural gas," Energy, Elsevier, vol. 35(10), pages 4042-4052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giap, Van-Tien & Kang, Sanggyu & Ahn, Kook Young, 2019. "HIGH-EFFICIENT reversible solid oxide fuel cell coupled with waste steam for distributed electrical energy storage system," Renewable Energy, Elsevier, vol. 144(C), pages 129-138.
    2. Shammya Afroze & Amal Najeebah Shalihah Binti Sofri & Md Sumon Reza & Zhanar Baktybaevna Iskakova & Asset Kabyshev & Kairat A. Kuterbekov & Kenzhebatyr Z. Bekmyrza & Lidiya Taimuratova & Mohammad Raki, 2023. "Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review," Energies, MDPI, vol. 16(23), pages 1-22, November.
    3. Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
    4. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
    5. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    6. Sun, Yang & Wang, Ligang & Xu, Cheng & Van herle, Jan & Maréchal, François & Yang, Yongping, 2020. "Enhancing the operational flexibility of thermal power plants by coupling high-temperature power-to-gas," Applied Energy, Elsevier, vol. 263(C).
    7. Wu, Yunna & Geng, Shuai & Zhang, Haobo & Gao, Min, 2014. "Decision framework of solar thermal power plant site selection based on linguistic Choquet operator," Applied Energy, Elsevier, vol. 136(C), pages 303-311.
    8. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    9. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    10. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    11. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    12. Ehteshami, S. Mohsen Mousavi & Vignesh, S. & Rasheed, R.K.A. & Chan, S.H., 2016. "Numerical investigations on ethanol electrolysis for production of pure hydrogen from renewable sources," Applied Energy, Elsevier, vol. 170(C), pages 388-393.
    13. Kaur, Gurpreet & Kulkarni, Aniruddha P. & Giddey, Sarbjit & Badwal, Sukhvinder P.S., 2018. "Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 221(C), pages 131-138.
    14. Timo Roeder & Kai Risthaus & Nathalie Monnerie & Christian Sattler, 2022. "Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications," Energies, MDPI, vol. 15(16), pages 1-21, August.
    15. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    16. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitaly Sergeev & Irina Anikina & Konstantin Kalmykov, 2021. "Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines," Energies, MDPI, vol. 14(9), pages 1-26, May.
    2. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    3. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    4. Wang, Shucheng & Chen, Xiaoxu & Wei, Bing & Fu, Zhongguang & Li, Hongwei & Qin, Mei, 2023. "Thermodynamic analysis of a net zero emission system with CCHP and green DME production by integrating biomass gasification," Energy, Elsevier, vol. 273(C).
    5. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
    6. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    7. Alsaleh, Mohd & Abdul-Rahim, A.S., 2018. "Determinants of cost efficiency of bioenergy industry: Evidence from EU28 countries," Renewable Energy, Elsevier, vol. 127(C), pages 746-762.
    8. Alsaleh, Mohd & Abdul-Rahim, A.S. & Mohd-Shahwahid, H.O., 2017. "Determinants of technical efficiency in the bioenergy industry in the EU28 region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1331-1349.
    9. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
    10. Sennai Mesfun & Jan-Olof Anderson & Kentaro Umeki & Andrea Toffolo, 2016. "Integrated SNG Production in a Typical Nordic Sawmill," Energies, MDPI, vol. 9(5), pages 1-19, April.
    11. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    12. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    13. Wang, Gang & Dong, Boyi & Chen, Zeshao, 2021. "Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S–CO2 Brayton cycle and MSF technology," Renewable Energy, Elsevier, vol. 176(C), pages 555-564.
    14. Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
    15. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    16. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:238-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.