IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030706.html
   My bibliography  Save this article

Eco-driving control for connected plug-in hybrid electric vehicles in urban scenarios with enhanced lane change engagement

Author

Listed:
  • Li, Jie
  • Liu, Yonggang
  • Cheng, Jun
  • Fotouhi, Abbas
  • Chen, Zheng

Abstract

Eco-driving control techniques have shown significant potential in reducing energy consumption in urban scenarios. The presence of slow-moving vehicles typically disrupts ecological velocity planning, leading to an increase in energy consumption. To solve it, this study proposes a hierarchical eco-driving control strategy, that integrates speed optimization and lane change decision-making in urban scenarios, to not only ensure traffic efficiency, but also save the energy consumption. Firstly, a data-driven energy model is leveraged in the upper level to estimate the energy consumption of candidate lanes and generate ecological lane change decisions. Then, in the lower level, the preceding vehicles and traffic lights are considered to plan an ecological velocity profile via deep reinforcement learning algorithm after transitions to the target driving lane, thereby enhancing the fuel economy and travel efficiency. A virtual driving environment model is established to verify the proposed method through numerous simulation cases. The results indicate that the proposed method effectively reduces energy consumption while maintaining favorable travel efficiency, compared with conventional benchmarks. Furthermore, the notable improvements are observed particularly in free traffic conditions.

Suggested Citation

  • Li, Jie & Liu, Yonggang & Cheng, Jun & Fotouhi, Abbas & Chen, Zheng, 2024. "Eco-driving control for connected plug-in hybrid electric vehicles in urban scenarios with enhanced lane change engagement," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030706
    DOI: 10.1016/j.energy.2024.133294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.