IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009770.html
   My bibliography  Save this article

Optimization strategy for connected automated vehicles to reduce energy consumption on freeway in rainy weather

Author

Listed:
  • Qin, Yanyan
  • Xiao, Tengfei
  • Wang, Hua

Abstract

Energy consumption on freeway significantly contributes to environmental pollution. Rainy weather, as a common adverse condition, will exert a negative impact on car-following behavior of vehicles on freeway and further affect their energy consumption. The emergence of connected automated vehicles (CAVs) has created an opportunity to mitigate these impacts. This paper aims to propose an optimization strategy for CAVs that can reduce energy consumption during car-following behavior on freeway under different rainy weather conditions. To begin with, a calibrated car-following model for regular vehicles (RVs) on freeway in rainy weather was used to derive an optimization strategy for CAVs that have vehicle-to-vehicle communication capability to stabilize traffic flow with smoothed speed fluctuations. The proposed optimization strategy for CAVs was then subjected to simulation experiments to validate its effectiveness. Results indicate that energy consumption on freeway in rainy weather is closely linked to speed fluctuations. Frequent speed fluctuations during car-following behavior could cause more energy consumption. The proposed optimization strategy for CAVs is capable of reducing energy consumption in rainy weather by smoothing speed fluctuations. CAVs equipped with this optimization strategy shows an energy-saving of 34.69%–61.11% compared to RVs under various rainy weather conditions.

Suggested Citation

  • Qin, Yanyan & Xiao, Tengfei & Wang, Hua, 2024. "Optimization strategy for connected automated vehicles to reduce energy consumption on freeway in rainy weather," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009770
    DOI: 10.1016/j.energy.2024.131204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    2. Li, Jie & Wu, Xiaodong & Fan, Jiawei & Liu, Yonggang & Xu, Min, 2023. "Overcoming driving challenges in complex urban traffic: A multi-objective eco-driving strategy via safety model based reinforcement learning," Energy, Elsevier, vol. 284(C).
    3. Akcelik, Rahmi, 1989. "Efficiency and drag in the power-based model of fuel consumption," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 376-385, October.
    4. Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
    5. Liu, Yonggang & Chen, Qianyou & Li, Jie & Zhang, Yuanjian & Chen, Zheng & Lei, Zhenzhen, 2023. "Collaborated eco-routing optimization for continuous traffic flow based on energy consumption difference of multiple vehicles," Energy, Elsevier, vol. 274(C).
    6. Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
    7. Montanino, Marcello & Punzo, Vincenzo, 2021. "On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 133-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    2. Zhou, Yang & Zhong, Xinzhi & Chen, Qian & Ahn, Soyoung & Jiang, Jiwan & Jafarsalehi, Ghazaleh, 2023. "Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    3. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    4. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    5. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
    6. Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
    7. Li Zhang & Dayi Qu & Xiaojing Zhang & Shouchen Dai & Qikun Wang, 2024. "Vehicle Driving Behavior Analysis and Unified Modeling in Urban Road Scenarios," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    8. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 174-198.
    9. Dai, Yulu & Yang, Yuwei & Wang, Zhiyuan & Luo, YinJie, 2022. "Exploring the impact of damping on Connected and Autonomous Vehicle platoon safety with CACC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    11. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    12. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    13. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 199-216.
    14. Montanino, Marcello & Monteil, Julien & Punzo, Vincenzo, 2021. "From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 136-154.
    15. Wang, Tao & Yuan, Zijian & Zhang, Yuanshu & Zhang, Jing & Tian, Junfang, 2023. "A driving guidance strategy with pre-stop line at signalized intersection: Collaborative optimization of capacity and fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    18. Gennaro Nicola Bifulco & Francesco Galante & Luigi Pariota & Maria Russo Spena, 2015. "A Linear Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems," Sustainability, MDPI, vol. 7(10), pages 1-18, October.
    19. Jiang, Yangsheng & Cong, Hongwei & Chen, Hongyu & Wu, Yunxia & Yao, Zhihong, 2024. "Adaptive cruise control design for collision risk avoidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    20. Huifu Jiang & Wei Zhou & Chang Liu & Guosheng Zhang & Meng Hu, 2020. "Safe and Ecological Speed Control for Heavy-Duty Vehicles on Long–Steep Downhill and Sharp-Curved Roads," Sustainability, MDPI, vol. 12(17), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.