IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6495-d1235993.html
   My bibliography  Save this article

Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility

Author

Listed:
  • Simin Hesami

    (The Mobility, Logistics, and Automotive Technology Research Center, Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Majid Vafaeipour

    (The Mobility, Logistics, and Automotive Technology Research Center, Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Cedric De Cauwer

    (The Mobility, Logistics, and Automotive Technology Research Center, Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Evy Rombaut

    (The Mobility, Logistics, and Automotive Technology Research Center, Department of Business Technology and Operations, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Lieselot Vanhaverbeke

    (The Mobility, Logistics, and Automotive Technology Research Center, Department of Business Technology and Operations, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Thierry Coosemans

    (The Mobility, Logistics, and Automotive Technology Research Center, Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

Abstract

As autonomous vehicle technology advances, the development of energy-efficient control methodologies emerges as a critical area in the literature. This includes the behavior control of vehicles near signalized intersections, which still needs comprehensive exploration. Through connectivity, the adoption of promising eco-driving approaches can manage a vehicle’s speed profile to improve energy consumption. This study focuses on controlling the speed of an autonomous electric vehicle (AEV) both up and downstream of a signalized intersection in the presence of preceding vehicles. In order to achieve this, a dynamic pro-active predictive cruise control eco-driving (eco-PPCC) framework is developed that, instead of merely reacting to the preceding vehicle’s speed changes, uses the preceding vehicle’s upcoming data to actively adjust and optimize the speed profile of the AEV. The proposed algorithm is compared to the conventional Gipps and eco-PCC models for benchmarking and performance analysis through numerous scenarios. Additionally, real-world measurements are performed and taken to consider practical use cases. The results demonstrate that when compared to the two baseline methods, the proposed framework can add significant value to reducing energy consumption, preventing unnecessary stops at intersections, and improving travel time.

Suggested Citation

  • Simin Hesami & Majid Vafaeipour & Cedric De Cauwer & Evy Rombaut & Lieselot Vanhaverbeke & Thierry Coosemans, 2023. "Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility," Energies, MDPI, vol. 16(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6495-:d:1235993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zifei Nie & Hooman Farzaneh, 2021. "Role of Model Predictive Control for Enhancing Eco-Driving of Electric Vehicles in Urban Transport System of Japan," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    2. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    3. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    4. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    5. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    6. Zhao, Shuaidong & Zhang, Kuilin, 2021. "Online predictive connected and automated eco-driving on signalized arterials considering traffic control devices and road geometry constraints under uncertain traffic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 80-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    2. Chen, Jie & Hu, Maobin & Shi, Congling, 2023. "Development of eco-routing guidance for connected electric vehicles in urban traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    4. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    5. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    6. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    7. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    8. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    9. Shao, Yichang & Han, Zhongyi & Shi, Xiaomeng & Zhang, Yuhan & Ye, Zhirui, 2024. "Risk-informed longitudinal control in autonomous vehicles: A safety potential field modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    10. Chandle Chae & Youngho Kim, 2023. "Investigation of Following Vehicles’ Driving Patterns Using Spectral Analysis Techniques," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    11. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    12. Chuanwei Zhang & Xibo Xue & Peilin Qin & Lingling Dong, 2023. "Research on a Speed Guidance Strategy for Mine Vehicles in Three-Fork Roadways Based on Vehicle–Road Coordination," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    13. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    14. Gunay, Banihan, 2007. "Car following theory with lateral discomfort," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 722-735, August.
    15. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    16. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    17. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    18. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    19. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    20. Yaqi Liu & Xiaoyuan Wang, 2020. "Differences in Driving Intention Transitions Caused by Driver’s Emotion Evolutions," IJERPH, MDPI, vol. 17(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6495-:d:1235993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.