IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124000281.html
   My bibliography  Save this article

Optimal lane management policy for connected automated vehicles in mixed traffic flow

Author

Listed:
  • Yao, Zhihong
  • Li, Le
  • Liao, Wenbin
  • Wang, Yi
  • Wu, Yunxia

Abstract

The management of lanes for mixed traffic flow consisting of connected automated vehicles (CAVs) and human-driven vehicles (HDVs) can effectively improve the operational efficiency of highways. This paper proposes an optimal lane management policy for connected automated vehicles in mixed traffic flow on highways. Firstly, the functioning characteristics of the mixed traffic flow are analyzed in three aspects, including car-following mode, headway, and platoon size. Secondly, the vehicle probability distributions under different lane management strategies are derived based on the Markov chain and conditional probability. Then, a calculation model for the capacity of mixed traffic flow was constructed by considering the features of lane management strategies, and sensitivity analyses were performed on the model parameters. Finally, a joint optimization model of CAVs dedicated lanes is proposed with the objective of maximum throughput based on constraints such as lane operation strategies, vehicle type ratios, and road resources. The numerical experiments lead to the following conclusions. (1) For two-lane highways, when the traffic demand is less than 6000 veh/h, the mixed driving lane management strategy should be applied; and when the traffic demand reaches 8000 veh/h, and the CAVs penetration rate is more than 0.56, one CAVs dedicated lane is required. Also, the higher the traffic demand, the lower the critical penetration rate of CAVs. (2) In the three-lane highway scenario, no dedicated lane is required when traffic demand is less than 8000 veh/h; one CAVs dedicated lane is needed when demand exceeds 8000 veh/h with CAVs penetration rate greater than 0.38; and two CAVs dedicated lanes are necessary when demand increases to 12800 veh/h and CAVs penetration rate is more than 0.79. (3) As for four-lane highways, the minimum traffic demand for installing one dedicated lane is 15600 veh/h, and the critical penetration rates for one, two, and three dedicated lanes are 0.32, 0.71, and 0.96, respectively. (4) The increase of CAVs dedicated lane usage willingness and platoon size promote the throughput, and the former CAVs dedicated lane usage willingness works more obviously. These research conclusions can provide theoretical and applied practical support for CAVs dedicated lanes management in the future.

Suggested Citation

  • Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000281
    DOI: 10.1016/j.physa.2024.129520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000281
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    2. Yao, Zhihong & Jin, Yuting & Jiang, Haoran & Hu, Lu & Jiang, Yangsheng, 2022. "CTM-based traffic signal optimization of mixed traffic flow with connected automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    4. Jiang, Yangsheng & Sun, Siyuan & Zhu, Fangyi & Wu, Yunxia & Yao, Zhihong, 2023. "A mixed capacity analysis and lane management model considering platoon size and intensity of CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    5. Wang, Tianshi & Lu, Huapu & Sun, Zhiyuan & Wang, Jianyu, 2023. "Towards higher efficiency and less consumption: Control Strategy and Simulation for CAV platooning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    6. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    7. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    8. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    9. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    10. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    11. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Zhong, Zijia & Lee, Joyoung, 2019. "The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 257-270.
    13. Ngoduy, Dong & Hoang, N.H. & Vu, H.L. & Watling, D., 2021. "Multiclass dynamic system optimum solution for mixed traffic of human-driven and automated vehicles considering physical queues," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 56-79.
    14. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    15. Abebe Dress Beza & Mohammad Maghrour Zefreh & Adam Torok, 2022. "Impacts of Different Types of Automated Vehicles on Traffic Flow Characteristics and Emissions: A Microscopic Traffic Simulation of Different Freeway Segments," Energies, MDPI, vol. 15(18), pages 1-19, September.
    16. Georges M. Arnaout & Jean-Paul Arnaout, 2014. "Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(2), pages 186-199, March.
    17. Hall, Randolph & Lotspeich, David, 1996. "Optimized Lane Assignment on an Automated Highway," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4jz9s97d, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yangsheng & Cong, Hongwei & Chen, Hongyu & Wu, Yunxia & Yao, Zhihong, 2024. "Adaptive cruise control design for collision risk avoidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    2. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    2. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    3. Qin, Yanyan & Xie, Lulu & Gong, Siyuan & Ding, Fan & Tang, Honghui, 2024. "An optimal lane configuration management scheme for a mixed traffic freeway with connected vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    4. Qin, Yanyan & Luo, Qinzhong & Xiao, Tengfei & He, Zhengbing, 2024. "Modeling the mixed traffic capacity of minor roads at a priority intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    5. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    6. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. Jiang, Yangsheng & Ren, Tingting & Ma, Yuqin & Wu, Yunxia & Yao, Zhihong, 2023. "Traffic safety evaluation of mixed traffic flow considering the maximum platoon size of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    9. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    10. Liu, Hongjie & Yuan, Tengfei & Zeng, Xiaoqing & Guo, KaiYi & Wang, Yizeng & Mo, Yanghui & Xu, Hongzhe, 2024. "Eco-driving strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    11. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    12. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    13. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    14. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    16. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    17. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    18. Zheng, Yuan & Yao, Zhihong & Xu, Yueru & Qu, Xu & Ran, Bin, 2024. "Lane management for mixed traffic flow on roadways considering the car-following behaviors of human-driven vehicles to follow connected and automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    19. Sala, Marcel & Soriguera, Francesc, 2021. "Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 116-131.
    20. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.