IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v243y2019icp119-131.html
   My bibliography  Save this article

Global energy system transformations in mitigation scenarios considering climate uncertainties

Author

Listed:
  • Silva Herran, Diego
  • Tachiiri, Kaoru
  • Matsumoto, Ken'ichi

Abstract

This study evaluates the effect of climate uncertainties on the transformations in the global energy system needed for realizing mitigation targets in the long term. Climate uncertainties affect the amount of allowable emissions from human activities that are consistent with a given climate target, and, thus, the range of necessary energy transformations. A range of emission scenarios consistent with intermediate (RCP4.5) and stringent (RCP2.6) mitigation targets are analyzed with an integrated assessment model (IAM). Emission scenarios are generated with an earth system model of intermediate complexity, which evaluated the variability of allowable carbon emissions due to uncertainties in the climate sensitivity, the carbon cycle and its feedbacks. The results showed that even when climate uncertainties are reflected at different scales across energy supply components, achieving mitigation targets needs partial decarbonization of supply, scale up of carbon capture and storage (CCS), and decreased energy consumption. The effect of climate uncertainties was largest for coal without CCS (up to 100% in 2100 compared to the central scenario) and bioenergy with CCS (up to 23% in 2100 compared to the central scenario). Land for bioenergy feedstocks, and the deployment of unmanaged lands for other purposes also had a considerable variation (10–20% in 2100). Compared to the uncertainty in socio-economic factors quantified in IAMs, the variation induced by the climate uncertainties was small. In contrast to previous IAM studies, the results herein explicitly described how climate-related uncertainties affect the global energy system, based on scenarios incorporating a robust approach for covering a wide scope of uncertainties from a climate model.

Suggested Citation

  • Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
  • Handle: RePEc:eee:appene:v:243:y:2019:i:c:p:119-131
    DOI: 10.1016/j.apenergy.2019.03.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919304775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
    2. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    3. van der Zwaan, Bob & Gerlagh, Reyer, 2006. "Climate sensitivity uncertainty and the necessity to transform global energy supply," Energy, Elsevier, vol. 31(14), pages 2571-2587.
    4. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    5. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    6. Bosetti, Valentina & Marangoni, Giacomo & Borgonovo, Emanuele & Diaz Anadon, Laura & Barron, Robert & McJeon, Haewon C. & Politis, Savvas & Friley, Paul, 2015. "Sensitivity to energy technology costs: A multi-model comparison analysis," Energy Policy, Elsevier, vol. 80(C), pages 244-263.
    7. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO 2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    8. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    9. Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
    10. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    11. Ottmar Edenhofer , Brigitte Knopf, Marian Leimbach and Nico Bauer, 2010. "ADAM's Modeling Comparison Project - Intentions and Prospects," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    12. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    13. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    14. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    15. Ken’ichi Matsumoto & Kaoru Tachiiri & Michio Kawamiya, 2018. "Evaluating multiple emission pathways for fixed cumulative carbon dioxide emissions from global-scale socioeconomic perspectives," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 1-26, January.
    16. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    17. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    18. Fant, Charles & Adam Schlosser, C. & Strzepek, Kenneth, 2016. "The impact of climate change on wind and solar resources in southern Africa," Applied Energy, Elsevier, vol. 161(C), pages 556-564.
    19. Wise, Marshall & Dooley, James & Luckow, Patrick & Calvin, Katherine & Kyle, Page, 2014. "Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century," Applied Energy, Elsevier, vol. 114(C), pages 763-773.
    20. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    21. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    22. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    23. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    24. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    25. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    26. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    27. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    28. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    29. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    30. Hayashi, Ayami & Tokimatsu, Koji & Yamamoto, Hiromi & Mori, Shunsuke, 2006. "Narrative scenario development based on cross-impact analysis for the evaluation of global-warming mitigation options," Applied Energy, Elsevier, vol. 83(10), pages 1062-1075, October.
    31. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    32. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    33. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    34. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    35. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Nico Bauer & Robert J. Brecha & Katherine Calvin & Enrica Cian & Jae Edmonds & Kejun Jiang & Massimo Tavoni & Ottmar Edenhofer, 2016. "Will economic growth and fossil fuel scarcity help or hinder climate stabilization?," Climatic Change, Springer, vol. 136(1), pages 7-22, May.
    36. Katsumasa Tanaka & Daniel Johansson & Brian O’Neill & Jan Fuglestvedt, 2013. "Emission metrics under the 2 °C climate stabilization target," Climatic Change, Springer, vol. 117(4), pages 933-941, April.
    37. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    38. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teijo Palander & Stelian Alexandru Borz & Kalle Kärhä, 2021. "Impacts of Road Infrastructure on the Environmental Efficiency of High Capacity Transportation in Harvesting of Renewable Wood Energy," Energies, MDPI, vol. 14(2), pages 1-20, January.
    2. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    3. Shanghui Jia & Xinhui Chen & Liyan Han & Jiayu Jin, 2023. "Global climate change and commodity markets: A hedging perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1393-1422, October.
    4. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
    6. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    7. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    8. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    9. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    10. Marcin Jamróz & Marian Piwowarski & Paweł Ziemiański & Gabriel Pawlak, 2021. "Technical and Economic Analysis of the Supercritical Combined Gas-Steam Cycle," Energies, MDPI, vol. 14(11), pages 1-21, May.
    11. Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
    12. Qiumei Ma & Yawei Zhao & Changming Ji & Yanke Zhang & Bo Ming, 2021. "Electricity Curtailment Cost Coupled to Operation Model Facilitates Clean Energy Accommodation in Grid-Connected System," Energies, MDPI, vol. 14(10), pages 1-21, May.
    13. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    14. Łukasz Mamica & Monika Mazur-Bubak & Renata Wróbel-Rotter, 2022. "Can Biogas Plants Become a Significant Part of the New Polish Energy Deal? Business Opportunities for Poland’s Biogas Industry," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
    15. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "Thermodynamic Fundamentals for Fuel Production Management," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    16. Karol Tucki & Olga Orynycz & Remigiusz Mruk & Antoni Świć & Katarzyna Botwińska, 2019. "Modeling of Biofuel’s Emissivity for Fuel Choice Management," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    17. Ma, Xin & Wang, Shuang & Li, Fashe & Zhang, Huicong & Jiang, Shang & Sui, Meng, 2022. "Effect of air flow rate and temperature on the atomization characteristics of biodiesel in internal and external flow fields of the pressure swirl nozzle," Energy, Elsevier, vol. 253(C).
    18. Liu, Jiahong & Wang, Jia & Ding, Xiangyi & Shao, Weiwei & Mei, Chao & Li, Zejin & Wang, Kaibo, 2020. "Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system," Applied Energy, Elsevier, vol. 278(C).
    19. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    20. Jia, Jixiu & Zhao, Lixin & Liu, Zhidan & Hao, Xiaowen & Huo, Lili & Zhao, Yanan & Yao, Zonglu, 2022. "Spray atomization characteristics of biomass pyrolysis tar: Influence of methanol addition, temperature, and atomization pressure," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    2. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    3. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    4. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    5. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    6. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    7. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    8. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    9. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    10. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    11. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    12. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
    13. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    14. Kun Peng & Kuishuang Feng & Bin Chen & Yuli Shan & Ning Zhang & Peng Wang & Kai Fang & Yanchao Bai & Xiaowei Zou & Wendong Wei & Xinyi Geng & Yiyi Zhang & Jiashuo Li, 2023. "The global power sector’s low-carbon transition may enhance sustainable development goal achievement," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    16. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    18. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    19. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    20. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:243:y:2019:i:c:p:119-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.