IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014634.html
   My bibliography  Save this article

Peak shaving at system level with a large district heating substation using deep learning forecasting models

Author

Listed:
  • Trabert, Ulrich
  • Pag, Felix
  • Orozaliev, Janybek
  • Jordan, Ulrike
  • Vajen, Klaus

Abstract

The decarbonisation of urban district heating (DH) systems requires increased heating grid flexibility. Therefore, this article examines the optimised operation of a tank thermal energy storage (TTES) on the secondary side of a new DH substation for an industrial site in a German city, in order to shave the peaks of the whole DH system and thus reduce the need for heat-only boilers (HOB). The accuracy of heat load and return temperature forecasts for both the industrial consumer and the DH grid is critical to the performance of the optimisation-based operating strategy of the TTES. Therefore, long short-term memory neural networks are used in combination with continuous model updates through incremental learning to create two forecasting scenarios, one using only preceding data for the forecasts and the other including future weather data. The results show that high forecasting accuracy is most relevant for reducing the annual maximum peak, with a reduction of 2.8% in the preceding data scenario, 4% with future weather data and 7% in a benchmark with perfect forecasts. The economic viability of the storage through HOB heat savings is primarily affected by lower forecasting accuracy when the additional cost of HOB heat is less than 60 €/MWh.

Suggested Citation

  • Trabert, Ulrich & Pag, Felix & Orozaliev, Janybek & Jordan, Ulrike & Vajen, Klaus, 2024. "Peak shaving at system level with a large district heating substation using deep learning forecasting models," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014634
    DOI: 10.1016/j.energy.2024.131690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Protić, Milan & Shamshirband, Shahaboddin & Petković, Dalibor & Abbasi, Almas & Mat Kiah, Miss Laiha & Unar, Jawed Akhtar & Živković, Ljiljana & Raos, Miomir, 2015. "Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm," Energy, Elsevier, vol. 87(C), pages 343-351.
    2. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    3. Nakama, Caroline S.M. & Knudsen, Brage R. & Tysland, Agnes C. & Jäschke, Johannes, 2023. "A simple dynamic optimization-based approach for sizing thermal energy storage using process data," Energy, Elsevier, vol. 268(C).
    4. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    5. Huang, Yaohui & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng & Liu, Hanjing & Fu, Yonggang, 2023. "Explainable district heat load forecasting with active deep learning," Applied Energy, Elsevier, vol. 350(C).
    6. Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
    7. Jan Lorenz Svensen, 2022. "Peak Shaving in District Heating Utilizing Adaptive Predictive Control," Energies, MDPI, vol. 15(22), pages 1-15, November.
    8. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    9. Guelpa, Elisa & Marincioni, Ludovica & Deputato, Stefania & Capone, Martina & Amelio, Stefano & Pochettino, Enrico & Verda, Vittorio, 2019. "Demand side management in district heating networks: A real application," Energy, Elsevier, vol. 182(C), pages 433-442.
    10. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    12. Knudsen, Brage Rugstad & Rohde, Daniel & Kauko, Hanne, 2021. "Thermal energy storage sizing for industrial waste-heat utilization in district heating: A model predictive control approach," Energy, Elsevier, vol. 234(C).
    13. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    14. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    15. Mateo Jesper & Felix Pag & Klaus Vajen & Ulrike Jordan, 2022. "Heat Load Profiles in Industry and the Tertiary Sector: Correlation with Electricity Consumption and Ex Post Modeling," Sustainability, MDPI, vol. 14(7), pages 1-32, March.
    16. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    17. Guelpa, Elisa & Barbero, Giulia & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Peak-shaving in district heating systems through optimal management of the thermal request of buildings," Energy, Elsevier, vol. 137(C), pages 706-714.
    18. Hanne Kauko & Daniel Rohde & Brage Rugstad Knudsen & Terje Sund-Olsen, 2020. "Potential of Thermal Energy Storage for a District Heating System Utilizing Industrial Waste Heat," Energies, MDPI, vol. 13(15), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    2. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    3. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    4. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    5. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    6. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    7. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    8. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    9. Saloux, Etienne & Runge, Jason & Zhang, Kun, 2023. "Operation optimization of multi-boiler district heating systems using artificial intelligence-based model predictive control: Field demonstrations," Energy, Elsevier, vol. 285(C).
    10. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    11. Guelpa, Elisa & Marincioni, Ludovica, 2019. "Demand side management in district heating systems by innovative control," Energy, Elsevier, vol. 188(C).
    12. Nakama, Caroline S.M. & Knudsen, Brage R. & Tysland, Agnes C. & Jäschke, Johannes, 2023. "A simple dynamic optimization-based approach for sizing thermal energy storage using process data," Energy, Elsevier, vol. 268(C).
    13. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    14. Huang, Yaohui & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng & Liu, Hanjing & Fu, Yonggang, 2023. "Explainable district heat load forecasting with active deep learning," Applied Energy, Elsevier, vol. 350(C).
    15. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Pei, Mingzhe & Zhao, Yan & Lu, Xuan, 2023. "Data-driven analysis and prediction of indoor characteristic temperature in district heating systems," Energy, Elsevier, vol. 282(C).
    16. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    17. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    18. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    19. Egging-Bratseth, Ruud & Kauko, Hanne & Knudsen, Brage Rugstad & Bakke, Sara Angell & Ettayebi, Amina & Haufe, Ina Renate, 2021. "Seasonal storage and demand side management in district heating systems with demand uncertainty," Applied Energy, Elsevier, vol. 285(C).
    20. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.