IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224029657.html
   My bibliography  Save this article

Short-term optimal scheduling of wind-photovoltaic-hydropower-thermal-pumped hydro storage coupled system based on a novel multi-objective priority stratification method

Author

Listed:
  • Wang, Kaiyan
  • Zhu, Hengtao
  • Dang, Jian
  • Ming, Bo
  • Wu, Xiong

Abstract

In the new power system with high proportion of uncertain renewable energy sources (RES), there is a defect of RES consumption at the expense of other power sources' operational efficiency. This paper proposes a short-term optimal scheduling model of wind-photovoltaic-hydropower-thermal-pumped hydro storage (WPHTPHS) coupled system, which realizes the multiple optimization objectives involving minimizing operation cost of thermal power units, maximizing clean energy power generation, minimizing net load fluctuation and thermal power regulation. First, to overcome the dimension disaster problem in the solution space of high-dimensional random variables, a method for pre-solving integer state variables is proposed. Then, a novel multi-objective solution strategy of priority stratification-coupled feedback combined with improved plant growth simulation algorithm is designed. Finally, the effectiveness and superiority of the proposed model and solution method are demonstrated by case studies, and the numerical results show that the number of startups and shutdowns, standard deviation of output and operating cost of thermal power units are reduced by 90.9 %, 65.34 %, and 14.01 % respectively, compared with traditional wind-photovoltaic-thermal strategy. This study contributes to resolving the relationship between conflicting objectives and highlighting the potential advantages of WPHTPHS coupled system to maximize overall performance from economic and stability perspectives.

Suggested Citation

  • Wang, Kaiyan & Zhu, Hengtao & Dang, Jian & Ming, Bo & Wu, Xiong, 2024. "Short-term optimal scheduling of wind-photovoltaic-hydropower-thermal-pumped hydro storage coupled system based on a novel multi-objective priority stratification method," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029657
    DOI: 10.1016/j.energy.2024.133190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.