IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp435-446.html
   My bibliography  Save this article

Day-ahead optimal dispatching of multi-source power system

Author

Listed:
  • Lu, Mengke
  • Guan, Jun
  • Wu, Huahua
  • Chen, Huizhe
  • Gu, Wei
  • Wu, Ye
  • Ling, ChengXiang
  • Zhang, Linqiang

Abstract

In this paper, the day-ahead optimal dispatching model of power system that is combined by wind-photovoltaic-hydropower-thermal-pumped storage is established. Firstly, according to the characteristics of the short-term hydropower system dispatching problem, a new mathematical model of the cascade hydropower group system with pumped storage power stations is proposed. The coordinated optimized dispatching model of the hydropower group system formed by the cascading of pumped storage power plants and conventional hydropower in the power system is studied. Secondly, the opportunity constraint programming model of forecast error reserve is used to deal with the output uncertainty of wind power and photovoltaic. The randomness and intermittency of renewable energy on the stability of the power system are overcame by the combination of wind-photovoltaic-pumped storage. Thirdly, the model for the joint optimal dispatch of short-term wind, photovoltaic, hydropower and thermal power systems with pumped storage is developed with system economics as the goal. Fourthly, the operation volatility coefficient of thermal power units is proposed to study the impact of renewable energy on the operation of thermal power. Finally, an example system is used to verify the correctness of the proposed dispatching optimal scheduling model, and the results prove that the daily dispatch optimization model proposed in this paper can increase the economic efficiency of the power system by 5%, reduce the start-stop times of thermal power units by 36.55%, and reduce the fluctuation coefficient of the unit by 2.8.

Suggested Citation

  • Lu, Mengke & Guan, Jun & Wu, Huahua & Chen, Huizhe & Gu, Wei & Wu, Ye & Ling, ChengXiang & Zhang, Linqiang, 2022. "Day-ahead optimal dispatching of multi-source power system," Renewable Energy, Elsevier, vol. 183(C), pages 435-446.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:435-446
    DOI: 10.1016/j.renene.2021.10.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takashi Mitani & Muhammad Aziz & Takuya Oda & Atsuki Uetsuji & Yoko Watanabe & Takao Kashiwagi, 2017. "Annual Assessment of Large-Scale Introduction of Renewable Energy: Modeling of Unit Commitment Schedule for Thermal Power Generators and Pumped Storages," Energies, MDPI, vol. 10(6), pages 1-19, May.
    2. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    3. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    4. Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
    5. Soulouknga, M.H. & Doka, S.Y. & N.Revanna, & N.Djongyang, & T.C.Kofane,, 2018. "Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution," Renewable Energy, Elsevier, vol. 121(C), pages 1-8.
    6. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    7. Vatanpour, Mohsen & Sadeghi Yazdankhah, Ahmad, 2018. "The impact of energy storage modeling in coordination with wind farm and thermal units on security and reliability in a stochastic unit commitment," Energy, Elsevier, vol. 162(C), pages 476-490.
    8. Zhao, Xiaoli & Liu, Suwei & Yan, Fengguang & Yuan, Ziqian & Liu, Zhiwen, 2017. "Energy conservation, environmental and economic value of the wind power priority dispatch in China," Renewable Energy, Elsevier, vol. 111(C), pages 666-675.
    9. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    2. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    3. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan, 2024. "Seasonal thermal energy storage employing solar heat: A case study of Heilongjiang, China, exploring the transition to clean heating and renewable power integration," Energy, Elsevier, vol. 305(C).
    4. Zhu, Yanmei & Zhou, Yerong & Tao, Xiangming & Chen, Shijun & Huang, Weibin & Ma, Guangwen, 2024. "A new clearing method for cascade hydropower spot market," Energy, Elsevier, vol. 289(C).
    5. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    6. Zheng, J.H. & Guo, J.C. & Deng, Weisi & Li, Zhigang & Wu, Q.H. & Zhou, X.X., 2024. "Flexible allocation and optimal configuration of multi-level energy exploitation units for heterogeneous energy systems considering resource distribution," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    2. Varadharajan Sankaralingam Sriraja Balaguru & Nesamony Jothi Swaroopan & Kannadasan Raju & Mohammed H. Alsharif & Mun-Kyeom Kim, 2021. "Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors," Sustainability, MDPI, vol. 13(4), pages 1-31, February.
    3. Bilal, Boudy & Adjallah, Kondo Hloindo & Yetilmezsoy, Kaan & Bahramian, Majid & Kıyan, Emel, 2021. "Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa," Energy, Elsevier, vol. 218(C).
    4. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    5. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    6. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    7. Quaranta, Emanuele & Muntean, Sebastian, 2023. "Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery," Applied Energy, Elsevier, vol. 329(C).
    8. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    9. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    10. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    11. Perini de Souza, Noéle Bissoli & Cardoso dos Santos, José Vicente & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Long-range correlations of the wind speed in a northeast region of Brazil," Energy, Elsevier, vol. 243(C).
    12. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    13. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    14. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    15. Woo-Jung Kim & Yu-Seok Lee & Yeong-Han Chun & Hae-Seong Jeong, 2022. "Reserve-Constrained Unit Commitment Considering Adjustable-Speed Pumped-Storage Hydropower and Its Economic Effect in Korean Power System," Energies, MDPI, vol. 15(7), pages 1-23, March.
    16. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    17. Zhang, Xinshuo & Huang, Weibin & Chen, Shijun & Xie, Diya & Liu, Dexu & Ma, Guangwen, 2020. "Grid–source coordinated dispatching based on heterogeneous energy hybrid power generation," Energy, Elsevier, vol. 205(C).
    18. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    19. Xu, Shitian & Liu, Pan & Li, Xiao & Cheng, Qian & Liu, Zheyuan, 2023. "Deriving long-term operating rules of the hydro-wind-PV hybrid energy system considering electricity price," Renewable Energy, Elsevier, vol. 219(P1).
    20. Qiumei Ma & Yawei Zhao & Changming Ji & Yanke Zhang & Bo Ming, 2021. "Electricity Curtailment Cost Coupled to Operation Model Facilitates Clean Energy Accommodation in Grid-Connected System," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:435-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.