IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026653.html
   My bibliography  Save this article

Numerical investigation of the physical-thermal-chemical behaviours of particles during coal combustion and desulfurization processes in a CFB combustor

Author

Listed:
  • Yang, Jianshan
  • Dong, Ting
  • Zhou, Weigang

Abstract

The desulfurization process has been practised for the clean utilization of coal in chemical engineering fields, yet the physical, thermal, and chemical characteristics of particles are still lacking understanding. In this work, a comprehensive numerical model based on the Eulerian-Lagrangian framework was established to study the particle behaviours during coal combustion and desulfurization processes in a pilot-scale circulating fluidized bed (CFB) combustor. After model validation, the effects of several crucial operation parameters (e.g., excess air ratio, calcium to sulphur ratio, and calcium oxide size) on particle behaviours are illuminated. The results show that density-induced segregation causes coal particles to accumulate in the upper part of the riser. The sand, coal, and CaO particles have time-averaged Reynolds numbers of 15, 6.5, and 0.5, respectively. The particle temperature is higher in areas with lower solid concentrations. Increasing excess air ratio (ϕg) decreases the temperature of sand particles but elevates that of coal and CaO particles. The average particle heat transfer coefficients (HTCs) for sand, coal, and CaO particles are 205 W/m2·K, 172 W/m2·K, and 275 W/m2·K, respectively. With the increase in ϕg, the HTC of sand particles increases but that of CaO particles remains unchanged, additionally, the mass of coal particles decreases and the mass of carbon in coal particles decreases along with the riser. The influence of the Ca/S ratio and CaO size on the axial distribution of coal particle mass and carbon mass fraction is negligible. For each particle species, the axial dispersion coefficient (Dz) is two orders of magnitude greater than the radial ones (Dx, Dy), indicating that the vertical introduction of the fluidizing gas dominates the dense gas-solid flow in the riser.

Suggested Citation

  • Yang, Jianshan & Dong, Ting & Zhou, Weigang, 2024. "Numerical investigation of the physical-thermal-chemical behaviours of particles during coal combustion and desulfurization processes in a CFB combustor," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026653
    DOI: 10.1016/j.energy.2024.132891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    2. Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
    3. Liu, Dianbin & Li, Wei & Li, Shiyuan & Song, Wenhao & Liu, Daofeng & Kong, Runjuan, 2019. "Transformation characteristics of sodium, chlorine and sulfur of Zhundong coal during O2/CO2 combustion in circulating fluidized bed," Energy, Elsevier, vol. 185(C), pages 254-261.
    4. Jaroslaw Krzywanski & Tomasz Czakiert & Anna Zylka & Wojciech Nowak & Marcin Sosnowski & Karolina Grabowska & Dorian Skrobek & Karol Sztekler & Anna Kulakowska & Waqar Muhammad Ashraf & Yunfei Gao, 2022. "Modelling of SO 2 and NO x Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    5. Kraft, Stephan & Kirnbauer, Friedrich & Hofbauer, Hermann, 2017. "CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input," Applied Energy, Elsevier, vol. 190(C), pages 408-420.
    6. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    7. Miao, Miao & Deng, Boyu & Kong, Hao & Yang, Hairui & Lyu, Junfu & Jiang, Xiaoguo & Zhang, Man, 2021. "Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed," Energy, Elsevier, vol. 220(C).
    8. Żukowski, Witold & Jankowski, Dawid & Wrona, Jan & Berkowicz-Płatek, Gabriela, 2023. "Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 263(PD).
    9. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
    2. Sun, Haoran & Bao, Guirong & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Numerical study of the biomass gasification process in an industrial-scale dual fluidized bed gasifier with 8MWth input," Renewable Energy, Elsevier, vol. 211(C), pages 681-696.
    3. Kijo-Kleczkowska, Agnieszka & Gnatowski, Adam & Krzywanski, Jaroslaw & Gajek, Marcin & Szumera, Magdalena & Tora, Barbara & Kogut, Krzysztof & Knaś, Krzysztof, 2024. "Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods," Energy, Elsevier, vol. 290(C).
    4. Li, Zhenghui & Yao, Shunchun & Chen, Da & Li, Longqian & Lu, Zhimin & Liu, Wen & Yu, Zhuliang, 2024. "Multi-parameter co-optimization for NOx emissions control from waste incinerators based on data-driven model and improved particle swarm optimization," Energy, Elsevier, vol. 306(C).
    5. Lin, Junjie & Luo, Kun & Wang, Shuai & Sun, Liyan & Fan, Jianren, 2022. "Particle-scale study of coal-direct chemical looping combustion (CLC)," Energy, Elsevier, vol. 250(C).
    6. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Catalyst-scale investigation of polydispersity effect on thermophysical properties in a commercial-scale catalytic MTO fluidized bed reactor," Energy, Elsevier, vol. 262(PA).
    7. Bello, Yusuf H. & Ahmed, Mahmoud A. & Ookawara, Shinichi & Elwardany, Ahmed E., 2022. "Numerical and experimental investigation on air distributor design of fluidized bed reactor of sawdust pyrolysis," Energy, Elsevier, vol. 239(PC).
    8. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    9. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    10. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    11. Armando Vitale & Andrea Di Carlo & Pier Ugo Foscolo & Alessandro Antonio Papa, 2024. "Kinetic Model Implementation of Fluidized Bed Devolatilization," Energies, MDPI, vol. 17(13), pages 1-17, June.
    12. Lizheng Zhao & Yanfei Du & Yusen Zeng & Zhizhong Kang & Baomin Sun, 2020. "Sulfur Conversion of Mixed Coal and Gangue during Combustion in a CFB Boiler," Energies, MDPI, vol. 13(3), pages 1-19, January.
    13. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    14. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    15. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    16. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    17. Banerjee, Subhodeep & Shahnam, Mehrdad & Rogers, William A. & Hughes, Robin W., 2023. "Transient simulation of biomass combustion in a circulating fluidized bed riser," Energy, Elsevier, vol. 264(C).
    18. Li, Yunlong & Feng, Lai & Chen, Wei, 2024. "Chemical effect of H2 on NH3 combustion in an O2 environment via molecular dynamics simulations," Energy, Elsevier, vol. 308(C).
    19. Zepeng Sun & Yazhuo Wang & Jing Gu & Haoran Yuan & Zejian Liu & Leilei Cheng & Xiang Li & Xian Li, 2023. "CFD Simulation and Experimental Study on a Thermal Energy Storage–Updraft Solid Waste Gasification Device," Energies, MDPI, vol. 16(12), pages 1-33, June.
    20. Zhao, Yi & Wang, Shuqin & Shen, Yanmei & Lu, Xiaojuan, 2013. "Effects of nano-TiO2 on combustion and desulfurization," Energy, Elsevier, vol. 56(C), pages 25-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.