IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics036054422100027x.html
   My bibliography  Save this article

Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed

Author

Listed:
  • Miao, Miao
  • Deng, Boyu
  • Kong, Hao
  • Yang, Hairui
  • Lyu, Junfu
  • Jiang, Xiaoguo
  • Zhang, Man

Abstract

Oxygen-enriched combustion in fluidized bed is a promising clean coal combustion technology which can efficiently control the emission of coal-fired pollutants, especially CO2. In this paper, by using several judging methods, the combustion characteristics of five kinds of coal under four different oxygen concentrations (20.9%, 27.8%, 40.7% and 52.7%, CO2 as equilibrium gas) were measured in the small-scale fluidized bed reactor with electric heating in detail. The oxygen consumption and volatile release characteristics were explored online. The influence of coal types, volatile matter and oxygen concentration on coal combustion characteristics was analysed. It’s found that the higher the bed temperature was, the faster the reaction rate was and the more oxygen consumption was. At a certain oxygen concentration and proper bed temperature, the separated combustion of volatile and char were observed. When the oxygen concentration was high, the separation phenomenon was more obvious. High-volatile, a certain bed temperature and oxygen concentration were the basic factors for the formation of separated combustion. The total volatile matter is not comprehensive as the index of reaction combustion characteristics and the effect of combustible components should be specifically considered. It’s found that for the coal with high combustible components, the separated combustion is more obvious. Volatile matter plays a dual role in the ignition and combustion of coal. The volatile matter (lower volatile matter) of some coals has a great promoting effect on coal combustion at higher temperature, while that (higher volatile matter) of other coals is not, which is closely related to the properties of char and the diffusion of volatile matter in pores.

Suggested Citation

  • Miao, Miao & Deng, Boyu & Kong, Hao & Yang, Hairui & Lyu, Junfu & Jiang, Xiaoguo & Zhang, Man, 2021. "Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s036054422100027x
    DOI: 10.1016/j.energy.2021.119778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100027X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blaszczuk, Artur & Pogorzelec, Michal & Shimizu, Tadaaki, 2018. "Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles," Energy, Elsevier, vol. 162(C), pages 10-19.
    2. Fan, Weidong & Li, Yu & Guo, Qinghong & Chen, Can & Wang, Yong, 2017. "Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal," Energy, Elsevier, vol. 125(C), pages 417-426.
    3. Tan, Y. & Jia, L. & Wu, Y. & Anthony, E.J., 2012. "Experiences and results on a 0.8MWth oxy-fuel operation pilot-scale circulating fluidized bed," Applied Energy, Elsevier, vol. 92(C), pages 343-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    2. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong & Wang, Guoqin & Li, Purui, 2024. "Low reaction threshold of ambient temperature oxidation of coal: Perspective from oxygen concentration and airflow rate," Energy, Elsevier, vol. 304(C).
    3. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nam, Hyungseok & Kim, Jung Hwan & Kim, Hana & Kim, Min Jae & Jeon, Sang-Goo & Jin, Gyoung-Tae & Won, Yooseob & Hwang, Byung Wook & Lee, Seung-Yong & Baek, Jeom-In & Lee, Doyeon & Seo, Myung Won & Ryu,, 2021. "CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis," Energy, Elsevier, vol. 214(C).
    2. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    3. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    4. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    5. Jin Yan & Xiaofeng Lu & Changfei Zhang & Qianjun Li & Jinping Wang & Shirong Liu & Xiong Zheng & Xuchen Fan, 2021. "An Experimental Study on the Characteristics of NO x Distributions at the SNCR Inlets of a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(5), pages 1-15, February.
    6. Artur Blaszczuk & Szymon Jagodzik, 2021. "Investigation of Heat Transfer in a Large-Scale External Heat Exchanger with Horizontal Smooth Tube Bundle," Energies, MDPI, vol. 14(17), pages 1-24, September.
    7. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    8. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    9. Seddighi, Sadegh, 2017. "Design of large scale oxy-fuel fluidized bed boilers: Constant thermal power and constant furnace size scenarios," Energy, Elsevier, vol. 118(C), pages 1286-1294.
    10. Nguyen, Hoang Khoi & Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Song, Byungho & Lee, Uendo & Yang, Chang Won & Mun, Tae-Young & Lee,, 2020. "Oxy-combustion characteristics as a function of oxygen concentration and biomass co-firing ratio in a 0.1 MWth circulating fluidized bed combustion test-rig," Energy, Elsevier, vol. 196(C).
    11. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    12. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    13. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    14. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    15. Li, Dongfang & Cai, Runxia & Zhang, Man & Yang, Hairui & Choi, Kyeong & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 192(C).
    16. Ocanha, Enzo Schlottfeldt & Zinani, Flávia Schwarz Franceschini & Modolo, Regina Celia Espinosa & Santos, Fernando Almeida, 2020. "Assesment of the effects of chemical and physical parameters in the fluidization of biomass and sand binary mixtures through statistical analysis," Energy, Elsevier, vol. 190(C).
    17. Kim, Seong-Ju & Park, Sung-Jin & Jo, Sung-Ho & Lee, Hookyung & Yoon, Sang-Jun & Moon, Ji-Hong & Ra, Ho-Won & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2023. "Effects of ammonia co-firing ratios and injection positions in the coal–ammonia co-firing process in a circulating fluidized bed combustion test rig," Energy, Elsevier, vol. 282(C).
    18. Gomez-Garcia, Fabrisio & Gauthier, Daniel & Flamant, Gilles, 2017. "Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage," Applied Energy, Elsevier, vol. 190(C), pages 510-523.
    19. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    20. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s036054422100027x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.