IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222030134.html
   My bibliography  Save this article

Transient simulation of biomass combustion in a circulating fluidized bed riser

Author

Listed:
  • Banerjee, Subhodeep
  • Shahnam, Mehrdad
  • Rogers, William A.
  • Hughes, Robin W.

Abstract

Interest in circulating fluidized bed (CFB) boilers as a power generation technology has sky-rocketed in recent years because of several advantages this technology offers over conventional boilers, such as increased gas-solid mixing, which results in higher combustion efficiency and the ability to use lower rank fuels. CFB combustors are operated at lower temperatures than conventional thermal power generation combustors, thus reducing NOx emissions, while SO2 emissions can be conveniently controlled through the addition of Ca-based sulfur sorbents within the combustor.

Suggested Citation

  • Banerjee, Subhodeep & Shahnam, Mehrdad & Rogers, William A. & Hughes, Robin W., 2023. "Transient simulation of biomass combustion in a circulating fluidized bed riser," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030134
    DOI: 10.1016/j.energy.2022.126127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Dianbin & Li, Wei & Li, Shiyuan & Song, Wenhao & Liu, Daofeng & Kong, Runjuan, 2019. "Transformation characteristics of sodium, chlorine and sulfur of Zhundong coal during O2/CO2 combustion in circulating fluidized bed," Energy, Elsevier, vol. 185(C), pages 254-261.
    2. Lee, Byoung-Hwa & Kim, Kang-Min & Bae, Yoon-Ho & Oh, Hyun-Suk & Kim, Gyu-Bo & Jeon, Chung-Hwan & Ahn, Young-Heon, 2022. "Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation," Energy, Elsevier, vol. 254(PA).
    3. Sun, Zhenkun & Lu, Dennis Y. & Ridha, Firas N. & Hughes, Robin W. & Filippou, Dimitrios, 2017. "Enhanced performance of ilmenite modified by CeO2, ZrO2, NiO, and Mn2O3 as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 195(C), pages 303-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    2. Wan, Kaidi & Vervisch, Luc & Gao, Zhenxun & Domingo, Pascale & Jiang, Chongwen & Xia, Jun & Wang, Zhihua, 2020. "Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms," Energy, Elsevier, vol. 211(C).
    3. Lizheng Zhao & Yanfei Du & Yusen Zeng & Zhizhong Kang & Baomin Sun, 2020. "Sulfur Conversion of Mixed Coal and Gangue during Combustion in a CFB Boiler," Energies, MDPI, vol. 13(3), pages 1-19, January.
    4. Yao, Liming & Liu, Yuxi & Xiao, Zhongmin & Chen, Yang, 2023. "An algorithm combining sedimentation experiments for pipe erosion investigation," Energy, Elsevier, vol. 270(C).
    5. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    6. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    7. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    8. Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
    9. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    10. Deng, Guixian & Li, Kongzhai & Zhang, Guifang & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Wang, Hua, 2019. "Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Rana, Shazadi & Sun, Zhenkun & Mehrani, Poupak & Hughes, Robin & Macchi, Arturo, 2019. "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas," Applied Energy, Elsevier, vol. 238(C), pages 747-759.
    12. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    13. Do, Jeong Yeon & Son, Namgyu & Park, No-Kuk & Kwak, Byeong Sub & Baek, Jeom-In & Ryu, Ho-Jung & Kang, Misook, 2018. "Reliable oxygen transfer in MgAl2O4 spinel through the reversible formation of oxygen vacancies by Cu2+/Fe3+ anchoring," Applied Energy, Elsevier, vol. 219(C), pages 138-150.
    14. Cheng, Xianming & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Zhouhang & Long, Yanhui & Zheng, Min & Tian, Dong & Wang, Hua, 2018. "Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences," Applied Energy, Elsevier, vol. 230(C), pages 696-711.
    15. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    16. Zhu, Yanyan & Jin, Nannan & Liu, Ruilin & Sun, Xueyan & Bai, Lei & Tian, Hanjing & Ma, Xiaoxun & Wang, Xiaodong, 2020. "Bimetallic BaFe2MAl9O19 (M = Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane," Applied Energy, Elsevier, vol. 258(C).
    17. Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Cheng, Mingkai & Chen, Sheng & Lyu, Yue & Qiao, Yu & Xu, Minghou, 2023. "Thermochemical conversion of multiple alkali metals in food waste pellet with a core-shell structure," Energy, Elsevier, vol. 268(C).
    19. Marek, Ewa & Hu, Wenting & Gaultois, Michael & Grey, Clare P. & Scott, Stuart A., 2018. "The use of strontium ferrite in chemical looping systems," Applied Energy, Elsevier, vol. 223(C), pages 369-382.
    20. Niu, Jian & Miao, Jiawen & Zhang, Huirong & Guo, Yanxia & Li, Linbo & Cheng, Fangqin, 2023. "Focusing on the impact of inherent minerals in coal on activated carbon production and its performance: The role of trace sodium on SO2 and/or NO removal," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.