IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp520-533.html
   My bibliography  Save this article

Dimensionless correlations and performance maps of scroll expanders for micro-scale Organic Rankine Cycles

Author

Listed:
  • Olmedo, Luis Eric
  • Mounier, Violette
  • Mendoza, Luis Carlos
  • Schiffmann, Jürg

Abstract

In the endeavor towards distributed power systems, not seasonal-dependent micro-power generation technologies are expected to integrate the energy scenario in the years to come. In this context, the Organic Rankine Cycle (ORC) in the (1–10) KWe scale has chronically lacked a suitable expansion device, hindering its market attractiveness. As scroll expanders have been pointed out as strong potential candidates, performance correlations and pre-design maps based on a review and analysis of published experimental data are presented. A dimensionless approach based on the traditional Ns, Ds dimensionless numbers stemming from turbomachinery has been chosen for greater generality. In addition, the lubricating oil mass fraction effect on the scroll expander performance has been included. The generated maps contribute to accelerating the pre-design phases at the system and component level with beneficial effects for the overall development process. Basic geometry and size characteristics are considered as well, acknowledging their importance in micro-power embedded applications; these considerations are illustrated in a passenger car waste-heat recovery case study. Findings suggest that optimized scroll expanders may potentially reach very interesting nominal electric isentropic efficiencies (up to 80% for an oil lubricated scroll expander).

Suggested Citation

  • Olmedo, Luis Eric & Mounier, Violette & Mendoza, Luis Carlos & Schiffmann, Jürg, 2018. "Dimensionless correlations and performance maps of scroll expanders for micro-scale Organic Rankine Cycles," Energy, Elsevier, vol. 156(C), pages 520-533.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:520-533
    DOI: 10.1016/j.energy.2018.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830820X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chao & Wang, Shukun & Zhang, Cheng & Li, Qibin & Xu, Xiaoxiao & Huo, Erguang, 2019. "Experimental study of micro-scale organic Rankine cycle system based on scroll expander," Energy, Elsevier, vol. 188(C).
    2. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    3. Fanti, Gabriel Rossi & Romão, Douglas Araújo & de Almeida, Ricardo Barbosa & de Mello, Paulo Eduardo Batista, 2020. "Influence of flank clearance on the performance of a scroll expander prototype," Energy, Elsevier, vol. 193(C).
    4. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    5. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
    6. Rak, Józef & Pietrowicz, Sławomir, 2020. "Internal flow field and heat transfer investigation inside the working chamber of a scroll compressor," Energy, Elsevier, vol. 202(C).
    7. Rosset, Kévin & Mounier, Violette & Guenat, Eliott & Schiffmann, Jürg, 2018. "Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines," Energy, Elsevier, vol. 159(C), pages 751-765.
    8. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2020. "CFD modelling of small scale ORC scroll expanders using variable wall thicknesses," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:520-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.