IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224025507.html
   My bibliography  Save this article

Performance characteristics of two-phase impulse turbines for energy recovery in thermal systems

Author

Listed:
  • Li, Hongyang
  • Chen, Jingwen
  • Zhang, Lei
  • Yu, Zhibin

Abstract

The two-phase impulse turbine (TPIT) can improve the efficiency and economy of various thermal systems, because it can directly convert the internal energy of thermal fluids into the shaft power of the turbine with no needs of additional low-temperature sub-systems. However, current efficiency of reported TPITs is much lower than gas or water turbines, due to unknown characteristics of the two-phase flow in TPITs. This paper comprehensively analyzed the performance characteristics of a TPIT, which was used in the refrigeration system. CFD methods were employed to analyze the two-phase flow based on flashing models and validated with experimental results. Three average methods were used to derive the Euler power and compared with the output power derived by the torque on each blade, while the average method based on the modified factor can evaluate the Euler power accurately. The non-uniform flow caused by the nozzle position was significant, while the liquid film near pressure side and the shroud were also three dimensional and affected by wall effects. The liquid layer on the shroud was related to the negative torque on blade tips. Results presented in this paper are constructive for designing efficient thermal systems without additional energy recovery devices.

Suggested Citation

  • Li, Hongyang & Chen, Jingwen & Zhang, Lei & Yu, Zhibin, 2024. "Performance characteristics of two-phase impulse turbines for energy recovery in thermal systems," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025507
    DOI: 10.1016/j.energy.2024.132776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224025507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongyang & Rane, Sham & Yu, Zhibin & Yu, Guopeng, 2021. "An inverse mean-line design method for optimizing radial outflow two-phase turbines in geothermal systems," Renewable Energy, Elsevier, vol. 168(C), pages 463-490.
    2. Li, Hongyang & Rane, Sham & Yu, Zhibin, 2021. "Investigation of the performance and flow characteristics of two-phase reaction turbines in total flow geothermal systems," Renewable Energy, Elsevier, vol. 175(C), pages 345-372.
    3. Yixiang Liao & Dirk Lucas, 2017. "Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Applications," Energies, MDPI, vol. 10(1), pages 1-22, January.
    4. Zhang, Zhenying & Li, Minxia & Ma, Yitai & Gong, Xiufeng, 2015. "Experimental investigation on a turbo expander substituted for throttle valve in the subcritical refrigeration system," Energy, Elsevier, vol. 79(C), pages 195-202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zheng & Xie, Jinghao & Zhao, Wenke & Zhang, Yaning & Li, Bingxi, 2024. "Energetic, exergetic and economic analysis of a trans-critical solar hybrid CCHP system," Renewable Energy, Elsevier, vol. 233(C).
    2. Andrea Arbula Blecich & Paolo Blecich, 2023. "Thermoeconomic Analysis of Subcritical and Supercritical Isobutane Cycles for Geothermal Power Generation," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    3. Alfredo Iranzo & Francisco Javier Pino & José Guerra & Francisco Bernal & Nicasio García, 2018. "Cooling Process Analysis of a 5-Drum System for Radioactive Waste Processing," Energies, MDPI, vol. 11(10), pages 1-25, October.
    4. Giacomelli, Francesco & Mazzelli, Federico & Milazzo, Adriano, 2018. "A novel CFD approach for the computation of R744 flashing nozzles in compressible and metastable conditions," Energy, Elsevier, vol. 162(C), pages 1092-1105.
    5. Comodi, Gabriele & Carducci, Francesco & Sze, Jia Yin & Balamurugan, Nagarajan & Romagnoli, Alessandro, 2017. "Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies," Energy, Elsevier, vol. 121(C), pages 676-694.
    6. Peng Song & Jinju Sun & Shengyuan Wang & Xuesong Wang, 2022. "Multipoint Design Optimization of a Radial-Outflow Turbine for Kalina Cycle System Considering Flexible Operating Conditions and Variable Ammonia-Water Mass Fraction," Energies, MDPI, vol. 15(22), pages 1-19, November.
    7. Yang, Yu & Chen, Shuangtao & Sheng, Chunchen & Xie, Hongtao & Luo, Gaoqiao & Hou, Yu, 2021. "Study on coupling performance of turbo-cooler in aircraft environmental control system," Energy, Elsevier, vol. 224(C).
    8. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    9. Guang Hu & Yue Ma & Qianfeng Liu, 2021. "Evaluation on Coupling of Wall Boiling and Population Balance Models for Vertical Gas-Liquid Subcooled Boiling Flow of First Loop of Nuclear Power Plant," Energies, MDPI, vol. 14(21), pages 1-29, November.
    10. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Bjørn H. Hjertager, 2017. "Engineering Fluid Dynamics," Energies, MDPI, vol. 10(10), pages 1-2, September.
    12. Frate, Guido Francesco & Ferrari, Lorenzo & Lensi, Roberto & Desideri, Umberto, 2019. "Steam expander as a throttling valve replacement in industrial plants: A techno-economic feasibility analysis," Applied Energy, Elsevier, vol. 238(C), pages 11-21.
    13. Li, Hongyang & Rane, Sham & Yu, Zhibin & Yu, Guopeng, 2021. "An inverse mean-line design method for optimizing radial outflow two-phase turbines in geothermal systems," Renewable Energy, Elsevier, vol. 168(C), pages 463-490.
    14. Liangyu Zhu & Tao Zhou & Xijia Ding & Xuemeng Qin & Jialei Zhang, 2019. "Study on the Movement and Deposition of Particles in Supercritical Water Natural Circulation Based on Grey Correlation Theory," Energies, MDPI, vol. 12(12), pages 1-18, June.
    15. Li, Hongyang & Rane, Sham & Yu, Zhibin, 2021. "Investigation of the performance and flow characteristics of two-phase reaction turbines in total flow geothermal systems," Renewable Energy, Elsevier, vol. 175(C), pages 345-372.
    16. Kumar, Manoj & Behera, Suraj K. & Kumar, Amitesh & Sahoo, Ranjit K., 2019. "Numerical and experimental investigation to visualize the fluid flow and thermal characteristics of a cryogenic turboexpander," Energy, Elsevier, vol. 189(C).
    17. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.