IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp345-372.html
   My bibliography  Save this article

Investigation of the performance and flow characteristics of two-phase reaction turbines in total flow geothermal systems

Author

Listed:
  • Li, Hongyang
  • Rane, Sham
  • Yu, Zhibin

Abstract

In a total flow geothermal system, the two-phase turbine can generate output power and recover fresh water for the water-deficient area. The performance of the two-phase turbine under various working conditions is significantly affected by operation parameters of the geothermal system. This paper presented performance evaluation methods of two-phase turbines, including one-dimensional (1D) method, two-dimensional (2D) method and three-dimensional (3D) method. The 1D method was a fast iteration approach and could reflect average flow parameters along the impeller channel. The 2D method included nonuniform effects in the rotational direction and the 3D method could derive the complete 3D flow in the channel using CFD methods. The three models were validated with experimental results under various rotational speeds. Compared with the 3D method, the 1D method and the 2D method could significantly reduce computational time. The performance of the two-phase reaction turbine was evaluated under various working conditions. A correction method based on 1D and 3D results was proposed to generate the performance map and evaluate the influence of operation parameters of the geothermal system on the turbine performance. Proposed methods and analysis can be widely used in the design, selection and operation of two-phase reaction turbines for various thermal systems.

Suggested Citation

  • Li, Hongyang & Rane, Sham & Yu, Zhibin, 2021. "Investigation of the performance and flow characteristics of two-phase reaction turbines in total flow geothermal systems," Renewable Energy, Elsevier, vol. 175(C), pages 345-372.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:345-372
    DOI: 10.1016/j.renene.2021.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongyang & Rane, Sham & Yu, Zhibin & Yu, Guopeng, 2021. "An inverse mean-line design method for optimizing radial outflow two-phase turbines in geothermal systems," Renewable Energy, Elsevier, vol. 168(C), pages 463-490.
    2. Guzović, Zvonimir & Rašković, Predrag & Blatarić, Zoran, 2014. "The comparision of a basic and a dual-pressure ORC (Organic Rankine Cycle): Geothermal Power Plant Velika Ciglena case study," Energy, Elsevier, vol. 76(C), pages 175-186.
    3. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    4. Cerci, Y., 2003. "Performance evaluation of a single-flash geothermal power plant in Denizli, Turkey," Energy, Elsevier, vol. 28(1), pages 27-35.
    5. Zhao, Yuchun & Akbarzadeh, Aliakbar & Andrews, John, 2009. "Simultaneous desalination and power generation using solar energy," Renewable Energy, Elsevier, vol. 34(2), pages 401-408.
    6. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    2. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    3. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    4. Unverdi, Murat & Cerci, Yunus, 2013. "Performance analysis of Germencik Geothermal Power Plant," Energy, Elsevier, vol. 52(C), pages 192-200.
    5. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    6. Luo, Chao & Huang, Lichang & Gong, Yulie & Ma, Weibin, 2012. "Thermodynamic comparison of different types of geothermal power plant systems and case studies in China," Renewable Energy, Elsevier, vol. 48(C), pages 155-160.
    7. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    8. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    9. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    10. Nadkarni, Kabir & Lefsrud, Lianne M. & Schiffner, Daniel & Banks, Jonathan, 2022. "Converting oil wells to geothermal resources: Roadmaps and roadblocks for energy transformation," Energy Policy, Elsevier, vol. 161(C).
    11. Ganjehsarabi, Hadi & Gungor, Ali & Dincer, Ibrahim, 2012. "Exergetic performance analysis of Dora II geothermal power plant in Turkey," Energy, Elsevier, vol. 46(1), pages 101-108.
    12. Rahbar, Kiyarash & Mahmoud, Saad & Al-Dadah, Raya K. & Moazami, Nima, 2015. "Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle," Energy, Elsevier, vol. 83(C), pages 696-711.
    13. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    14. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    15. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    16. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    17. Anahita Moharamian & Saeed Soltani & Faramarz Ranjbar & Mortaza Yari & Marc A Rosen, 2017. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit," Energy & Environment, , vol. 28(7), pages 725-743, November.
    18. Jizhe Guo & Zengchao Feng & Xuecheng Li, 2023. "Shear Strength and Energy Evolution of Granite under Real-Time Temperature," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    19. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    20. Subiantoro, Alison & Ooi, Kim Tiow, 2014. "Comparison and performance analysis of the novel revolving vane expander design variants in low and medium pressure applications," Energy, Elsevier, vol. 78(C), pages 747-757.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:345-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.