IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics0960148124012242.html
   My bibliography  Save this article

Energetic, exergetic and economic analysis of a trans-critical solar hybrid CCHP system

Author

Listed:
  • Wang, Zheng
  • Xie, Jinghao
  • Zhao, Wenke
  • Zhang, Yaning
  • Li, Bingxi

Abstract

A solar hybrid CCHP (combination of cooling, heating and power) system was proposed to organically integrate the Brayton and reverse Carnot cycle by trans-critical CO2 working medium. The transient thermal storage in a solar hybrid CCHP system (SCCHP) was designed to overcome the energy coupling challenges in regions rich in solar and gas resources. Moreover, the incorporation of an optimally efficient throttling expander in cooling cycle was designed to enhance energy utilization efficiency. The thermodynamic performance of the SCCHP system was systematically evaluated by comparing with the ejector hybrid CCHP system from energetic, exergetic, and economic perspectives. The results suggest that elevating the intake pressure of both the high-pressure compressor from 5.2 kW to 6.4 kW and turbine from 7.3 kW to 7.8 kW, led to an enhancement in the COP of the SCCHP system. Moreover, raising the turbine intake temperatures from 483.15 K to 503.15 K yielded a significant improvement in system energy efficiency from 0.66 to 0.71 and COP from 1.58 to 1.72. Furthermore, in contrast to the ECHP system, the components in the SCCHP system demonstrated not only less exergy efficiency variation to the influence of ambient temperature but also lower hourly economic costs. The SCCHP has an average hourly investment cost that is 5.70 USD (kgh)−1 lower than ECHP, and its economic efficiency improves with higher ambient temperatures.

Suggested Citation

  • Wang, Zheng & Xie, Jinghao & Zhao, Wenke & Zhang, Yaning & Li, Bingxi, 2024. "Energetic, exergetic and economic analysis of a trans-critical solar hybrid CCHP system," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012242
    DOI: 10.1016/j.renene.2024.121156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solar energy; SCCHP; Expander; CO2; Exergetic analysis;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.