IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221002784.html
   My bibliography  Save this article

Study on coupling performance of turbo-cooler in aircraft environmental control system

Author

Listed:
  • Yang, Yu
  • Chen, Shuangtao
  • Sheng, Chunchen
  • Xie, Hongtao
  • Luo, Gaoqiao
  • Hou, Yu

Abstract

A reverse-bootstrap air cycle turbo-cooler with a coaxial expansion turbine, power turbine, and compressor has been developed for an aircraft environmental control system. The coupling relations of the coaxial three-impeller system are more complicated than those of the conventional turbo-expander with a brake blower or compressor. The coupling characteristics have a considerable impact on efficiency, and thus need to be studied. The performance curve for each impeller was obtained by CFX. The coupling model was established and experimentally validated on the basis of theoretical analysis and simulation results of the coaxial three-impeller system. The experimental results indicated that the turbo-cooler achieved good thermal performance under both design and off-design conditions, and the theoretical results from the coupling model agreed well with the experimental data. The results show that the total relative error between the theoretical calculations and experimental data was within ±15%, and for most experimental data it was within ±5%. Thereafter, the coupling performance was described through the coupling model, and the interactions among the coupling parameters were quantitatively explained. The coupling model could accurately describe the interaction between the coupling parameters and allow for performance prediction and design optimisation of the coaxial three-impeller turbo-cooler system.

Suggested Citation

  • Yang, Yu & Chen, Shuangtao & Sheng, Chunchen & Xie, Hongtao & Luo, Gaoqiao & Hou, Yu, 2021. "Study on coupling performance of turbo-cooler in aircraft environmental control system," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221002784
    DOI: 10.1016/j.energy.2021.120029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ordonez, Juan Carlos & Bejan, Adrian, 2003. "Minimum power requirement for environmental control of aircraft," Energy, Elsevier, vol. 28(12), pages 1183-1202.
    2. Zhang, Zhenying & Li, Minxia & Ma, Yitai & Gong, Xiufeng, 2015. "Experimental investigation on a turbo expander substituted for throttle valve in the subcritical refrigeration system," Energy, Elsevier, vol. 79(C), pages 195-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    2. Meng, Yang & Zhang, Yicheng & Wang, Junxin & Chen, Shuangtao & Hou, Yu & Chen, Liang, 2023. "Performance optimization of turboexpander-compressors for energy recovery in small air-separation plants," Energy, Elsevier, vol. 271(C).
    3. Duan, Zhongdi & Sun, Haoran & Wu, Chengyun & Hu, Haitao, 2022. "Flow-network based dynamic modelling and simulation of the temperature control system for commercial aircraft with multiple temperature zones," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, T.K. & Vargas, J.V.C. & Ordonez, J.C. & Shah, D. & Martinho, L.C.S., 2015. "Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response," Applied Energy, Elsevier, vol. 158(C), pages 540-555.
    2. Sun, Haoran & Duan, Zhongdi & Wang, Xuyang & Wang, Dawei & Wu, Chengyun, 2023. "A pressure-node based dynamic model for simulation and control of aircraft air-conditioning systems," Energy, Elsevier, vol. 263(PD).
    3. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Frate, Guido Francesco & Ferrari, Lorenzo & Lensi, Roberto & Desideri, Umberto, 2019. "Steam expander as a throttling valve replacement in industrial plants: A techno-economic feasibility analysis," Applied Energy, Elsevier, vol. 238(C), pages 11-21.
    5. Kumar, Manoj & Behera, Suraj K. & Kumar, Amitesh & Sahoo, Ranjit K., 2019. "Numerical and experimental investigation to visualize the fluid flow and thermal characteristics of a cryogenic turboexpander," Energy, Elsevier, vol. 189(C).
    6. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
    7. Yang, Yuanchao & Gao, Zichen, 2019. "Power optimization of the environmental control system for the civil more electric aircraft," Energy, Elsevier, vol. 172(C), pages 196-206.
    8. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    9. Comodi, Gabriele & Carducci, Francesco & Sze, Jia Yin & Balamurugan, Nagarajan & Romagnoli, Alessandro, 2017. "Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies," Energy, Elsevier, vol. 121(C), pages 676-694.
    10. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    11. Li, Hongyang & Rane, Sham & Yu, Zhibin & Yu, Guopeng, 2021. "An inverse mean-line design method for optimizing radial outflow two-phase turbines in geothermal systems," Renewable Energy, Elsevier, vol. 168(C), pages 463-490.
    12. Duan, Zhongdi & Sun, Haoran & Wu, Chengyun & Hu, Haitao, 2022. "Flow-network based dynamic modelling and simulation of the temperature control system for commercial aircraft with multiple temperature zones," Energy, Elsevier, vol. 238(PB).
    13. Duan, Zhongdi & Sun, Haoran & Wu, Chengyun & Hu, Haitao, 2022. "Multi-objective optimization of the aircraft environment control system based on component-level parameter decomposition," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221002784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.