IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024046.html
   My bibliography  Save this article

Environmental and economic assessment of industrial excess heat recovery collaborations through 4th generation district heating systems

Author

Listed:
  • Chinese, D.
  • Meneghetti, A.
  • Cortella, G.
  • Giordano, L.
  • Tomasinsig, E.
  • Benedetti, M.

Abstract

The external use of excess heat from industrial processes is an important factor in the energy transition and 4th generation district heating is an enabling technology. This paper presents a calculation tool for assessing the economic feasibility and the environmental impact of collaborations between potential industrial sources and users. The tool supports the sizing of district heating pipe diameters, pumps, heat pumps, and heat storage systems. A distinctive feature of the model is the possibility of calculating carbon and blue water footprints, alongside economic indicators, for both existing stand-alone systems and potential collaborative configurations. Excess heat recovery from water-cooled condensers of refrigeration systems is evaluated for two case studies involving the space heating of offices in a food logistics hub and the heating of a greenhouse from a frozen pizza factory, respectively. Only the second collaboration is profitable with the baseline price of natural gas (0.04 €/kWh) and electricity (0.12 €/kWh), provided that the distance between the source and the user is less than 2 km. For higher gas prices, distances of approximately 8 km would be viable. However, for source-user distances above 5 km, the water footprint of the collaboration would be higher than that of stand-alone systems.

Suggested Citation

  • Chinese, D. & Meneghetti, A. & Cortella, G. & Giordano, L. & Tomasinsig, E. & Benedetti, M., 2024. "Environmental and economic assessment of industrial excess heat recovery collaborations through 4th generation district heating systems," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024046
    DOI: 10.1016/j.energy.2024.132630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.